AL-FARABI KAZAKH NATIONAL UNIVERSITY

INFORMATION about publication activity FACULTY OF BIOLOGY AND BIOTECHNOLOGY

Nº	Наименование публикации	Выходные данные (doi cmamьu)	Аннотация статьи	Ссылка для цитирования (Ф.И.О., название статьи, название, номер и/или выпуск, том журнала, страницы, doi статьи)
1	Rice Plants (Oryza sativa L.) under Cd Stress in Fe Deficiency Conditions	https://doi.org/10.1 155/2022/7425085	Due to the environment pollution by cadmium (Cd) near industrial metallurgic factories and the widespread use of phosphorus fertilizers, the problem of toxic Cd effect on plants is well discussed by many authors, but the phytotoxicity of Cd under iron (Fe) deficiency stress has not been sufficiently studied. The aim of the work was to study comprehensively the effect of Cd under Fe deficiency conditions on physiological, biochemical, and anatomical parameters of rice varieties, to identify varietal differences in plant response to the effect of double stress. Relative resistance and sensitivity to the joint effect of Cd and Fe deficiency stress have been identified. Double stress decreased a linear growth and biomass accumulation of roots and	S.D. Atabayeva, A.B. Rakhymgozhina , A.S. Nurmahanova , S.S. Kenzhebayeva , B.N. Usenbekov , R.A. Alybayeva , S.Sh.Asrandina , B.M.Tynybekov , and A.K. Amirova Hindawi BioMed Research International Volume 2022, Article ID 7425085, 23 pages

			chapter (by 26 50% and 22 (6% and 22 56% and 22 (0%)	
			shoots (by 36-50% and 33-46% and 32-56% and 32-48%, accordingly), content of photosynthetic pigments (Chla, Chlb, and carotenoids by 36-51%, 32-47%, and 64-78%, accordingly), and relative water content (by 18-26%). Proline content increased by 28-103% in all rice varieties, but to a lesser extent in sensitive varieties. The thickness of the lower and upper epidermis and the diameter of vascular bundles of leaves decreased by 18-50%, 46-60%, and 13-48%, accordingly. The thickness of the root endodermis and exodermis and diameter of the central cylinder mainly decreased. The thickness of the exodermis increased slightly by 7%, and the diameter of the central cylinder remained at the control level in resistant Madina variety while in sensitive Chapsari variety, these indicators decreased significantly by 50 and 45%, accordingly. Thus, the aggravation of adverse effect of Cd under Fe deficiency conditions and the varietal specificity of plants' response to double stress were shown. It creates the need for further study of these rice varieties using Fe to identify mechanisms for reducing the toxic effect of Cd on plants as well as the study of Fe and Cd transporter genes at the	
2	Organ-specific expression of genes involved in iron homeostasis in wheat mutant lines with increased grain iron and zinc content	DOI 10.7717/peerj.1351 5	molecular level. Iron deficiency is a well-known nutritional disorder, and the imbalance of trace-elements, specifically iron, is the most common nutrient deficiency of foods across the world, including in Kazakhstan. Wheat has significant nutritional relevance, especially in the provision of iron, however many bread wheat varieties have low iron despite the need for human nourishment. In this study, the expression profiles of wheat homologous genes related to iron homeostasis were investigated. The work resulted in the development of two new M5 mutant lines of spring bread wheat through gamma-irradiation (200 Gy) with higher grain iron and zinc content, lower phytic acid content, and enhanced iron bioavailability compared to the parent variety. Mutant lines were also characterized by higher means of yield associated traits such as grain number per main spike, grain weight per main spike, grain weight per plant, and thousand-grain weight. Methods: The homologous genes of bread wheat from several groups were selected for gene expression studies exploring the	S. Kenzhebayeva, S.Atabayeva, F. Sarsu, A.Abekova, S.Shoinbekova, N.Omirbekova, G. Doktyrbay, A. Beisenova,Y. Shavrukov PeerJ, 2022, DOI 10.7717/peerj.13515

			tight control of iron uptake, translocation rate and accumulation in leaves and roots, and comprised the following: (1) S- adenosylmethionine synthase (SAMS), nicotianamine synthase (NAS1), nicotianamine aminotransferase (NAAT), deoxymugineic acid synthetase (DMAS), involved in the synthesis and release of phytosiderophores; (2) transcription factor basic helix-loop-helix (bHLH); (3) transporters of mugineic acid (TOM), involved in long-distance iron transport; (4) yellow stripe-like (YSIA), and the vacuolar transporter (VIT2), involved in intracellular iron transport and storage; and lastly (5) natural resistance-associated macrophage protein (NRAMP) and ferritin (Fer1A). Results: The wheat homologous genes TaSAMS, TaNAS1, and TaDMAS, were significantly up-regulated in the roots of both mutant lines by 2.1–4.7-fold compared to the parent variety. The combined over-expression of TaYSIA and TaVIT2 was also revealed in the roots of mutant lines by 1.3–2.7-fold. In one of the mutant lines, genes encoding intracellular iron transport and storage genes TaNRAMP and TaFer1A-D showed significant up-regulation in roots and leaves (by 1.4- and 3.5-fold, respectively). The highest expression was recorded in the transcription factor TabHLH, which was expressed 13.1- and 30.2-fold in the roots of mutant lines. Our research revealed that genotype-dependent and organ- specific gene expression profiles can provide new insights into iron uptake, translocation rate, storage, and regulation in wheat which aid the prioritization of gene targets for iron biofortification and biavail/bility.	
3	The protein and amino acid content in seeds of Kazakhstani soybean varieties	https://doi.org/10.5 2081/bkaku.2022.v 62.i3.087	The article presents results of determining the content of proteins and amino acids in seeds of Kazakhstani soybean varieties. Soybean, being a high-protein crop, contains from 30 to 50% protein. The advantage of soybean protein among other plant proteins is the optimal ratio of amino acids. These are, first of all, essential amino acids, the main source of which are animal proteins. Soy protein, when consumed at the recommended dose, most fully satisfies the daily intake of essential amino acids of an adult. It is important to identify varieties with the highest	Kh.S. Yevloyeva, S.D. Atabayeva, A.B. Rakhymgozhina, S.V. Didorenko, G.K.Kamshybayeva. The protein and amino acid content in seeds of Kazakhstani soybean varieties. Вестник КУ им. Кокрыт Ата, №3(62). стр

			protein content and essential amino acids. In this study, protein determination was carried out by the Bradford (1976) spectrophotometric method. The amino acid content was determined by high-performance liquid chromatography. The objects of the study were domestic soybean varieties: «Lastochka», «Almaty» and «Vita» from the collection of LLP «Kazakh Research Institute of Agriculture and Plant growing», Almalybak v., Almaty region, Republic of Kazakhstan. According to the results obtained, the Lastochka variety has the highest content of protein, and also the amino acid composition of the «Lastochka» variety differs by existing of essential amino acids, which makes it possible to recommend it both for food and in the production of biologically active additives.	121-128. https://doi.org/10.52081/bkaku. 2022.v62.i3.087
4	Identification and characterization of bluetongue virus in <i>Culicoides</i> spp. and clinically healthy livestock in southeastern Kazakhstan	https://doi.org/10.1 016/j.cimid.2022.10 1895	Bluetongue is an arthropod-borne disease of ruminants. Here, we investigated the seroprevalence of bluetongue virus (BTV) in livestock and performed the first genetic characterization of BTV isolated from sheep and <i>Culicoides</i> midges in the southeastern region of Kazakhstan.	Zhigailov AV, Perfilyeva YV, Maltseva ER, Ostapchuk YO, Cherusheva AS, Naizabayeva DA, Nizkorodova AS, Berdygulova ZA, Mashzhan AS, Bissenbay AO, Kuatbekova SA, Koshemetov ZK, Abdolla N, Skiba YA, Mamadaliyev SM. Identification and characterization of bluetongue virus in <i>Culicoides</i> spp. and clinically healthy livestock in southeastern Kazakhstan. Comp Immunol Microbiol Infect Dis. P. 90-91:101895. doi: 10.1016/j.cimid.2022.101895.
5	Prevalence and genetic diversity of <i>coronaviruses</i> , <i>astroviruses</i> and <i>paramyxoviruses</i> in wild birds in southeastern Kazakhstan	https://doi.org/10.1 016/j.heliyon.2022. e11324	Wild birds are natural reservoirs of many emerging viruses, including some zoonoses. Considering that the territory of Kazakhstan is crossed by several bird migration routes, it is important to know pathogenic viruses circulating in migratory birds in this region. Therefore, the aim of this study was to identify the host range, diversity and spatial distribution of avian paramyxoviruses, coronaviruses, and astroviruses in free-ranging wild birds in the southeastern region of Kazakhstan. For this purpose, we collected tracheal and cloacal swabs from 242 wild birds belonging to 51 species and screened them using	Zhigailov AV, Maltseva ER, Perfilyeva YV, Ostapchuk YO, Naizabayeva DA, Berdygulova ZA, Kuatbekova SA, Nizkorodova AS, Mashzhan A, Gavrilov AE, Abayev AZ, Akhmetollayev IA, Mamadaliyev SM, Skiba YA. Prevalence and genetic diversity of coronaviruses, astroviruses and

			conventional PCR assays. Overall, 4.1% (10/242) and 2.9% (7/242) of all examined birds tested positive for coronaviruses and astroviruses, respectively. Coronaviruses were found in the orders Pelecaniformes (30%; 3/10), Charadriiformes (30%; 3/10), Columbiformes (20%; 2/10), Anseriformes (10%; 1/10), and Passeriformes (10%; 1/10). All detected strains belonged to the genus <i>Gammacoronavirus</i> . Astroviruses were detected in birds representing the orders Passeriformes (57%; 4/7), Coraciiformes (14%; 1/7), Charadriiformes (14%; 1/7), and Columbiformes (14%; 1/7). Paramyxoviruses were observed in only two birds (0.8%; 2/242). Both strains were closely related to the species APMV-22, which had not been previously detected in Kazakhstan. Phylogenetic analysis of the partial <i>RdRp</i> gene sequences of the virus strains revealed three different clades of astroviruses, two clades of coronaviruses, and one clade of paramyxoviruses, coronaviruses, and astroviruses in wild birds in southeastern Kazakhstan and highlight the importance of further thorough monitoring of wild birds in this region.	paramyxoviruses in wild birds in southeastern Kazakhstan. Heliyon. 31;8(11):e11324. doi: 10.1016/j.heliyon.2022.e11324.
6	Распространенност ь лихорадки Ку в южном регионе Казахстана	https://doi.org/10.2 6577/EJE.2022.v7 3.i4.010	Лихорадка Ку (коксиеллез) - зоонозная инфекция, вызываемой бактерией Coxiella (С.) burnetii, которая может инфицировать многие виды млекопитающих, включая человека. Эта работа направлена на исследование распространённости С. burnetii среди домашнего скота и людей, проживающих в южном регионе Казахстана с помощью иммуноферментного анализа (ИФА). Для серологического мониторинга проведен сбор образцов сыворотки у 100 жителей Жамбылской области в эпидемиологический сезон 2021 г. Выявлено, что общая серопревалентность IgG к C. burnetii равна 3,3%. Также проведен серологический анализ 282 образцов сыворотки крови от Capra hircus, Ovis aries и Bos taurus, собранных в Туркестанской и Жамбылской областях. Показано, что общая серопревалентность антител к C. burnetii у сельскохозяйственных животных составляет 32,2% и 23,0% в Туркестанской и Жамбылской областях, соответственно. Проведен эпидемиологический анализ данных серомониторинга домашнего скота. Показано что видовая	Перфильева Ю.В., Машжан А.С., Жигайлов А.В., Остапчук Е.О., Мальцева Э.Р., Найзабаева Д.А., Бердыгулова Ж.А., Бисенбай А.О., Скиба Ю.А., Дмитровский А.М., Мамадалиев С.М. Распространенность лихорадки Ку в южном регионе Казахстана. Вестник КазНУ. Серия «экологическая» №4(73). 2022. С. 99-110 https://doi.org/10.26577/EJE.20 22.v73.i4.010

			принадлежность к Capra hircus, женский пол и обитание в Байдибекском, Сайрамском, Казыгуртском районах Туркестанской области и в районе Т. Рыскулов Жамбылской области являются факторами риска инфицирования С. burnetii в южном регионе Казахстана. Полученные результаты говорят о необходимости проведения дальнейшего исследования в этом направлении для выделения возбудителя и идентификации его основных резервуаров. Ключевые слова: Coxiella (C.) burnetii, коксиеллез, эпидемиология, иммуноферментный анализ, сыворотка.	
7	Детекция Bacillus anthracis по генам профага lambda_Ba03 посредством ПЦР в реальном времени	https://doi.org/10.2 1055/0370-1069- 2022-3-170-172	Цель исследования – разработка набора праймеров и флуоресцентных зондов для детекции двух хромосомных мишеней Bacillus anthracis методом ПЦР в реальном времени на основе генов профага lambda_Ba03. При BLAST- анализе хромосомной ДНК В. anthracis в качестве мишеней определены два гена профага lambdaBa03: BA_5358 (AE016879.1: 48523324853642) и BA_5361 (AE016879.1: 48552984856278). Разработанные праймеры и флуоресцентные гидролизуемые пробы TaqMan для одновременной детекции хромосомной ДНК В. anthracis по двум указанным генам проверены в реакциях ПЦР в реальном времени на чувствительность и специфичность. Проведенные исследования на образцах хромосомной ДНК близкородственных бактерий (B. cereus, B. thuringiensis, B. subtilis, B. clausii) показали 100 % специфичность разработанных сетов праймеров/зондов. Чувствительность разработанных образцах ДНК В. anthracis, составила 100 фг бактериальной ДНК, что в пересчете определяет предел чувствительности в 16,72 бактериального генома на реакцию. Разработанный мультиплексный набор позволяет использовать его как отдельный инструмент для исследовательских лабораторий, изучающих сибирскую язву.	Низкородова А.С., Мальцева Э.Р., Бердыгулова Ж.А., Найзабаева Д.А., Куатбекова С.А., Жигайлов А.В., Абдолла Н., Машжан А.С., Ахметоллаев И.А., Скиба Ю.А., Мамадалиев С.М. Детекция Bacillus anthracis по генам профага lambda_Ba03 посредством ПЦР в реальном времени. Проблемы особо опасных инфекций. 2022;(3):170-172. https://doi.org/10.21055/0370- 1069-2022-3-170-172

8	Анализ рисков	https://doi.org/	Казахстан считается страной, благополучной по катаральной	Жигайлов А.В., Остапчук Е.О.,
	распространения	$C1/71_81$	лихорадке овец (1010). В то же время	Перфильева Ю.В., Аодолла Н Мальцева Э.В.
		91/1-01	покрецы рода Cullcoldes, являющиеся основными	П., Малецева О.Г.,
	Лихорадки овец в		переносчиками вируса, вызывающего Кло, распространены	Паизаоаева д.А., Куатоекова
	Казахстане		в стране практически повсеместно. Па юге казахстана	
				А.С., Вердыгулова Л.А.,
			распространения кло в случае заноса вируса из других	
			стран, включающие оптимальный для размножения	Истик Карту. Серия
			мокрецов климат, высокую плотность восприимчивого к	\sim Биология. Медицина.
			вирусу скота и постоянный приток импортируемого	Теография №2(100) 2022. С. 71-81
			племенного скота из районов, где инфекция является	11-01 https://doi.org/10.31/80/2022B
			эндемичной. Пеконтролируемое распространение Кло на	MG1/71_81
			территории казалстана может овтв сопряжено с	MG1/71-01
			имеет чрезвычайно важное значение лля отечественного	
			животноводства. Экономические затраты в этом случае не	
			булут ограничиваться пишь	
			палежом животных существенный ушерб может быть	
			нанесен имиджу нашей страны как экспортёру	
			баранины. В настояшем обзоре приведены сведения.	
			подчеркивающие значимость программ по контролю КЛО в	
			Казахстане и эпидемиологический анализ рисков	
			распространения данной инфекции в	
			стране.	
9	Анализ рисков	https://doi.org/10.2	Верблюдоводство является важным направлением	Жигайлов А.В., Машжан А.С.,
	распространения	6577/EJE.2022.v7	отечественного животноводства. Значительные территории	Бисенбай А.О., Остапчук Е.О.,
	оспы верблюдов в	1.i2.09	Казахстана заняты пустынями, а верблюды – одни из	Перфильева Ю.В., Мальцева
	Казахстане		немногих домашних животных, способных к жизни на таких	Э.Р., Найзабаева Д.А.,
			землях. Оспа верблюдов является самой важной в	Бердыгулова Ж.А.,
			экономическом плане вирусной болезнью мозоленогих.	Скиба Ю.А., Мамадалиев С.М.
			Ранее на территории страны происходили эпизоотии этой	Вестник КазНУ. Серия
			инфекции. Важно, что последнее десятилетие поголовье	«экологическая» №2(71).
			верблюдов в стране постоянно увеличивается, поэтому	2022. C. 93-102
			риски, связанные с возникновением новых эпизоотий,	https://doi.org/10.26577/EJE.20
			многократно возрастают. Для обеспечения эффективных	22.v71.i2.09
			мер по контролю этой опасной болезни верблюдов	
			необходимо провести тотальный мониторинг всей	
			территории страны. Спорадические серологические	

			исследования проводились прежде только в Мангистауской области, уровень серопревалентности к возбудителю оспы верблюдов для других областей страны не определен. Критично, чтобы такой мониторинг был проведен до старта компании по вакцинации верблюдов вакциной отечественного производства, чтобы можно было оценить эффективность проводимой вакцинации. В статье приводятся данные по анализу рисков, связанных с распространением оспы верблюдов в Казахстане, а также результаты подготовительных работ для проведения	
			мониторинга территории страны в отношении оспы верблюдов.	
10	Identification of microorganisms isolated from oil reservoir water of the Akingen field, Kazakhstan	https://doi.org/10.2 6577/eb.2022.v90.i 1.11	Currently, there is a continuous growth of deposits in Western Kazakhstan that are in the late stage of development. Deposits often have a complex heterogeneous structure with hard-to-recover reserves, so for their effective development it is necessary to apply methods of increasing oil recovery. One of the most effective methods of enhanced oil recovery is microbial enhanced oil recovery (MEOR). Mi-croorganisms of the developed oil-reservoir waters, adapted to the extreme underground conditions of the reservoirs, are promising objects for the development of microbiological methods for increasing oil recovery, based on their ability to displace and dilute oil. The article presents the identification of aero-bic microorganisms, waterlogged oil reservoir waters of the Akingen field isolated under aerobic conditions. Traditional microbiological and genetic methods of identification of microbiological and genetic activity of the isolated strains (lipase, amylolytic, proteolytic activity) was evaluated. The emulsification index was carried out according to the Cooper method. As a result of microbiological and genetic studies of the nucleotide sequence of the 16S rRNA gene fragment, 14 aerobic strains of microorganisms were identified as representatives of the genus Pseudomonas and Bacillus, in particular, Bacillus paramycoides-M1; B. subtilis subsp. spizizenii-S1; Bacillus sp. – M2, A1, A2, A3, A4, A5, S2, S3, D-1X; P. aeruginosa-D5, D6, D7. The evaluation of	Kaiyrmanova G. K., Tapeshova Sh. Zh., Shaimerdenova U. T., Magmiyayev R. B., Yernazarova A.K. Вестник KaзHУ. Серия биологическая – №1 (90). – 2022. – 126-136 c. https://doi.org/10.26577/eb.202 2.v90.i1.11

			microorganisms with a high oil emulsification index: P.	
			aeruginosa-D5, D6, D7 (40-49 %) and Bacillus sp. D1X (32 %).	
			Isolates P. aeruginosa – D5, D6, D7 and Bacillus sp. D1X are	
			promising objects for use in enhanced oil recovery technologies	
11	Biotechnology of	https://doi.org/10.3	It was generally believed that coal sources are not favorable as	Akimbekov NS, Digel I,
	Microorganisms from	390/biology110913	live-in habitats for microorganisms due to their recalcitrant	Tastambek KT, Marat AK,
	Coal Environments:	06	chemical nature and negligible decomposition. However,	Turaliyeva MA, Kaiyrmanova
	From Environmental	_	accumulating evidence has revealed the presence of diverse	GK. Biotechnology of
	Remediation to		microbial groups in coal environments and their significant	Microorganisms from Coal
	Energy Production.		metabolic role in coal biogeochemical dynamics and ecosystem	Environments: From
			functioning. The high oxygen content, organic fractions, and	Environmental Remediation to
			lignin-like structures of lower-rank coals may provide effective	Energy Production. <i>Biology</i> .
			means for microbial attack, still representing a greatly unexplored	2022; 11(9):1306.
			frontier in microbiology. Coal degradation/conversion technology	https://doi.org/10.3390/biology1
			by native bacterial and fungal species has great potential in	1091306
			agricultural development, chemical industry production, and	
			environmental rehabilitation. Furthermore, native microalgal	
			species can offer a sustainable energy source and an excellent	
			bioremediation strategy applicable to coal spill/seam waters.	
			Additionally, the measures of the fate of the microbial community	
			would serve as an indicator of restoration progress on post-coal-	
			mining sites. This review puts forward a comprehensive vision of	
			coal biodegradation and bioprocessing by microorganisms native	
			to coal environments for determining their biotechnological	
			potential and possible applications.	
12	Feasibility of waste-	Journal of Applied	Following the circular bioeconomy approach, this study shows the	Akmukhanova,
	free use of	Phycology. 2022,	possibility of effective microalgal bioremediation of aquaculture	N.R., Sadvakasova,
	microalgae in	Q-2, процентиль-	wastewater integrated with the production of protein-rich	A.K., Torekhanova,
	aquaculture	88.	biomass, which can be used as a feed additive. Screening was	M.M.,Chang, J
			carried out among strains of Chlorella vulgaris BB-2,	S., Allakhverdiev, S.I.
			Parachlorella kessleri Bh-2 and Chlamydomonas reinhardtii C-	Feasibility of waste-free use of
			124 with the aim of selecting the strain which is characterized by	microalgae in aquaculture
			high indicators of growth in the fish farms wastewaters. Among	Journal of Applied
			these three strains, C. vulgaris BB-2 was selected due to its	Рһусоlоду, 2022, 34(5), стр.
			increased growth rate in aquaculture wastewater with ammonia.	2297–2313
			nitrite, and nitrate and phosphate removal. In addition, in the	DOI 10.1007/s10811-022-
			water when cultivating microalgae in it the coliform index and total	02787-y
			microbial number decreased to 5 and 1.8 × 103 colonv-forming	
			unit cm-3. Large-scale microalgae cultivation utilizing	

			aquaculture wastewater gave biomass production of 43.5 mg L-1 day-1. The biochemical composition analysis of the aquaculture wastewater phycoremediation-derived biomass of C. vulgaris BB-2 revealed that the content of $57.0 \pm 1.2\%$ protein, 16 $\pm 1.2\%$ lipid, and $11.4 \pm 1.4\%$ carbohydrate. The obtained data indicate that the lipid extract of microalgae C. vulgaris BB-2 contained saturated 30.7% and polyunsaturated fatty acids 69.3%. The main fraction of amino acids consisted of glutamic acid, lysine, aspartic acid and leucine. The utilization of 25% microalgal biomass as a feed additive in the diet of fish has shown a positive effect on the morpho-physiological and biochemical growth parameters and intestinal microflora of Nile tilapia (Oreochromis niloticus).	
13	Determination of the Promising Microalgal Strain for Bioremediation of the Aquaculture Wastewater	Місгоbiology. Том 91, Выпуск 5, Страницы 533 - 54, <u>Q-3,</u> процентиль–32.	Applicability of three strains of green microalgae (Chlorella vulgaris SP BB-2, Parachlorella kessleri, and Chlamydomonas reinhardtii Dangeard CC-124) for bioremediation (contaminants removal) of aquaculture wastewater was investigated. C. vulgaris strain SP BB-2 exhibited the highest growth rate and biomass accumulation. This strain was found to utilize nitrogen and phosphorus from wastewater for growth and development and showed high efficiency according to chemical oxygen demand (COD). Moreover, among the studied strains, C. vulgaris SP BB-2 produced biomass with the highest protein content, which may be recommended as a feed additive for the aquaculture. Analysis of the induction and rapid light curves of chlorophyll fluorescence revealed alterations in the energy storage photosynthetic processes of C. vulgaris SP BB-2 cells when grown on the aquaculture wastewater. Thus, high values of the maximum quantum yield of primary photochemistry in photosystem II (PSII) (F_V/F_M), quantum yield of electron transport (ϕ_{Eo}), PSII performance index on absorption basis (PI _{ABS}), and the light utilization coefficient (α) were observed. C. vulgaris strain SP BB-2 may be recommended for wastewater treatment, while its highly sensitive parameters of chlorophyll fluorescence induction (PI _{ABS} , ϕ_{Eo}) may be used as indicators of the state of the microalgae. © 2022, Pleiades Publishing, Ltd.	Akmukhanova, N.R., Zayadan, B.K., Sadvakasova, A.K.,Todorenko, D.A., Matorin, D.N. Determination of the Promising Microalgal Strain for Bioremediation of the Aquaculture Wastewater Microbiology (Russian Federation), 2022, 91(5), cTp. 533–541 DOI 10.1134/S0026261722601166

14	Peculiarities of adsorption of Cr (VI)	Heliyon, 2022, 8(9), e10468	Cr (VI) compounds are the most dangerous for human health and the environment, therefore, the study of their adsorption features	Tattibayeva, Z., Tazhibayeva, S., Kujawski, W., Zayadan, B.,
	ions on the surface of	https://doi.org/10.1	is of great interest. A comprehensive study of the adsorption of	Musabekov, K. Peculiarities of
	Chlorella vulgaris	016/i.helivon.2022.	Cr (VI) jons on the surface of <i>Chlorella vulgaris ZBS1</i> algae cells	adsorption of Cr (VI) ions on the
	ZBS1 algae cells.	e10468	was carried out evaluating the effect of the pH of the medium on	surface of Chlorella vulgaris
			the degree of removal of Cr (VI) ions from solutions and on the	ZBS1 algae cells. Helivon, 2022.
			zeta potential of the cell surface was. The highest values of the	8(9), e10468
			degree of removal of Cr (VI) ions equal to 946–954% are	https://doi.org/10.1016/i.helivon
			achieved in the pH range of $1-2$, being the result of the	2022 e10468
			electrostatic attraction of $HCrO_4^-$ groups to protonated amino	
			aroups of the cell surface and the possibility of reducing Cr (VI)	
			ions to Cr (III) in an acidic medium, followed by the formation of	
			Cr (III) ions of coordination bonds with amine and carboxyl groups	
			of algae cells.	
			The adsorption data were processed within the framework of	
			Langmuir Freundlich Dubinin-Radushkevich and Temkin	
			models. It was shown that the maximum Langmuir adsorption	
			value was 74.63 mg/g. The values of the adsorption parameters	
			1/n and K _f in the Freundlich model were equal to 0.713 and 2.82	
			ma/a In the Dubinin-Radushkevich model the maximum	
			adsorption capacity (a_m) and free energy (E) were equal to 39.73	
			mg/g and 2.604 k.l/mol_respectively. Whereas, according to the	
			Temkin model the constant A was equal to 18 215 I /mg and b _T	
			was equal to 0.023 k.l/mol. Taking into account the low values of	
			free energy it is concluded that adsorption is caused by non-	
			covalent interactions	
			The study of adsorption kinetics showed that the adsorption of Cr	
			(VI) jons on the surface of <i>Chlorella vulgaris</i> ZBS1 algae cells is	
			described in the framework of the pseudo-second order model	
			The kinetic behavior of the process is discussed in the framework	
			of the IPDM and FI M models. With increasing temperature, the	
			constant of intraparticle diffusion of Cr (VI) ions decreases which	
			is explained with increasing of hydrophobic interactions between	
			nonpolar sites of protein macromolecules and polysaccharides in	
			the composition of algae cells. The increase in the adsorption of	
			Cr (VI) jons at pH 8.62 in the temperature range of 298–353 K is	

			justified by the shrinkage of the biosorbent volume, which leads to the blocking of a part of the <u>anionic groups</u> on the surface of algae cells. Therefore, the decrease in the <u>electrostatic repulsion</u> between the <u>negatively charged surface</u> of the adsorbent and Cr (VI) <u>oxyanions</u> is observed.	
15	Strategies and economic feasibilities in cyanobacterial hydrogen production	International Journal of Hydrogen Energy, 2022	Due to the side effects of greenhouse gases, interest in alternative energy sources is growing, and research into hydrogen (H ₂) production from cyanobacteria has become a promising direction for the industry. The article provides an overview of cyanobacterial <u>hydrogen production</u> strategies and their current economic efficiency. It also describes metabolic, genetic and technical methods for obtaining H ₂ from cyanobacteria. Cyanobacteria are considered potential producers of <u>hydrogen energy</u> that will be economically viable shortly, as they only need cheap salts, water and solar energy to grow. However, <u>producing hydrogen</u> from cyanobacteria still requires extensive work, and the main problem is the small amount of hydrogen energy obtained. To produce large amounts of cyanobacterial hydrogen, the most active wild-type strains must be selected and technological, modular and genetic research must be carried out simultaneously. The low energy efficiency of hydrogen from cyanobacteria also shows the need for comprehensive research through international programs.	Kamshybayeva, G.K., Kossalbayev, B.D., Sadvakasova, A.K., Zayadan B.K,Alwasel, S., Allakhverdiev, S.I. <u>Strategies</u> <u>and economic feasibilities in</u> <u>cyanobacterial hydrogen</u> <u>production</u> . <u>International Journal</u> <u>of Hydrogen Energy</u> , 2022
16	A Novel Antimicrobial Metabolite Produced by Paenibacillus api arius Isolated from Brackish Water of Lake Balkhash in Kazakhstan.,Microor ganisms,	<i>Microorganisms</i> 2022, <i>10</i> (8), 1519; <u>https://doi.org/10.3</u> <u>390/microorganism</u> <u>s10081519</u>		Meene, A., Herzer, C., Schlüter, R.,Zayadan B.KUrich, T., Mikolasch, A. A Novel Antimicrobial Metabolite Produced by Paenibacillus apiarius Isolat ed from Brackish Water of Lake Balkhash in Kazakhstan.,Microorganisms, 2022, 10(8), 1519

17	Biohydrogen	International	A limited supply of oil prompts the search for non-traditional	Bekzhan D. Kossalbayev, Ardak
	production by novel	Journal of	energy sources to replace traditional ones. This makes hydrogen	B. Kakimova, Kenzhegul
	cyanobacterial	Hydrogen Energy.	gas an appealing alternative source. Photosynthetic organisms	Bolatkhan, Bolatkhan K.
	strains isolated from	Q-1,процентиль –	capture sunlight very efficiently and convert it into organic	Zayadan, Sandugash K.
	rice paddies in	90.	molecules. A promising wild strain was isolated for the first time,	Sandybayeva, Ayshat
	Kazakhstan	https://doi.org/10.1	from the rice paddies of Kazakhstan (Kyzylorda and Almaty	M. Bozieva. Asemoul K.
		016/i.iihvdene.2022	regions), which can be considered as one of the most active	Sadvakasova. Saleh Alwasel.
		.03.126.	hydrogen producers compared to the literature. The result	Sulevman I. Allakhverdiev.
			showed that among the 13 isolated and collection cvanobacterial	Biohydrogen production by
			strains, <i>Synechocystis</i> sp. S-1 is the most active H ₂ producer	novel cvanobacterial strains
			(2.35 µmol H ₂ mg ⁻¹ Chl a h ⁻¹) in the light. In contrast, the wild-	isolated from rice paddies in
			type cyanobacterium Anabaena variabilis A-1 had higher	Kazakhstan//International
			productivity, nitrogenase activity, and a stronger capacity to	Journal of Hydrogen Energy, Q-
			produce hydrogen in the dark (8.67 μ mol H ₂ mg ⁻¹ Chl a h ⁻¹).	1.процентиль – 90.
			which matched the maximum vield obtained in the research. The	https://doi.org/10.1016/i.iihvden
			metabolic modulation performed significantly increased hydrogen	e.2022.03.126.
			production. The highest photohydrogen production rate was	
			observed in cells incubated with 25 µmol HEPES and 50 µmol	
			sodium bicarbonate (NaHCO ₃).	
18	Influence of Mo and	Cells 2022, 11(5),	The potential of cyanobacteria to perform a variety of distinct	Sadvakasova, A.K., Kossalbave
	Fe on Photosynthetic	904;	roles vital for the biosphere, including nutrient cycling and	v,B.D.,
	and Nitrogenase Acti	https://doi.org/10.3	environmental detoxification, drives interest in studying their	Token, A.I., Zayadan, BK, Cha
	vities of Nitrogen-	390/cells11050904	biodiversity. Increasing soil erosion and the overuse of chemical	ng, J
	Fixing Cyanobacteria		fertilizers are global problems in developed countries. The option	S., Allakhverdiev, S.I.Influence
	under Nitrogen		might be to switch to organic farming, which entails largely the	of Mo and Fe on Photosynthetic
	Starvation Cells		use of biofertilisers. Cyanobacteria are prokaryotic,	and Nitrogenase Activities of
			photosynthetic organisms with considerable potential, within	Nitrogen-Fixing Cyanobacteria
			agrobiotechnology, to produce biofertilisers. They contribute	under Nitrogen Starvation Cells,
			significantly to plant drought resistance and nitrogen enrichment	2022, 11(5), 904
			in the soil. This study sought, isolated, and investigated nitrogen-	, , , , ,
			fixing cyanobacterial strains in rice fields, and evaluated the effect	
			of Mo and Fe on photosynthetic and nitrogenase activities under	
			nitrogen starvation. Cvanobacterial isolates, isolated from rice	
			paddies in Kazakhstan, were identified as Trichormus variabilis	
			K-31 (MZ079356), Cylindrospermum badium J-8 (MZ079357).	
			Nostoc sp. J-14 (MZ079360). Oscillatoria brevis SH-12	
			(MZ090011), and Tolypothrix tenuis J-1 (MZ079361). The study	
			of the influence of various concentrations of Mo and Fe on	
			photosynthetic and nitrogenase activities under conditions of	

			nitrogen starvation revealed the optimal concentrations of metals	
			that have a stimulating effect on the studied parameters.	
19	A Novel	Microorganisms	Abstract: Four aerobic bacteria with bacteriolytic capabilities were	Alexander Meene 1,†,
	Antimicrobial	2022, 10, 1519.	isolated from the brackish water site Strait Uzynaral of Lake	Christiane Herzer 1,†, Rabea
	Metabolite Produced	https://doi.org/10.3	Balkhash in Kazakhstan. The morphology and physiology of the	Schlüter 2, Bolatkhan Zayadan
	by Paenibacillus	390/	bacterial isolates have subsequently been analyzed. Using matrix	3, Ruediger Pukall 4, Peter
	apiarius Isolated	microorganisms10	assisted laser desorption ionization-time of flight mass spectrum	Schumann 4, Frieder Schauer 1
	from Brackish Water	081519	and partial 16S rRNA gene sequence analyses, three of the	. Tim Urich 1 and Annett
	of Lake Balkhash in		isolates have been identified as Pseudomonas veronii and one	Mikolasch 1.*
	Kazakhstan		as Paenibacillus apiarius. We determined the capability of both	,
			species to lyse pre-grown cells of the Gram-negative strains	
			Pseudomonas putida SBUG 24 and Escherichia coli SBUG 13 as	
			well as the Gram-positive strains Micrococcus luteus SBUG 16	
			and Arthrobacter citreus SBUG 321 on solid media. The	
			bacteriolysis process was analyzed by creating growth curves	
			and electron micrographs of co-cultures with the bacteriolytic	
			isolates and the lysis sensitive strain Arthrobacter citreus SBUG	
			321 in nutrient-poor liquid media. One metabolite of Paenibacillus	
			apiarius was isolated and structurally characterized by various	
			chemical structure determination methods. It is a novel antibiotic	
			substance	
20	Prospects of	Biochemical	Increasing awareness of the harmful effects of synthetic colorants	Sandybayeya S. K.
	cvanobacterial	Engineering	has led consumers to favor the use of natural alternatives such	Kossalbavev, B. D., Zavadan, B.
	pigment production:	Journal. 187	as plant or microbial pigments in food and cosmetics.	K., Sadvakasova, A. K.
	Biotechnological	doi:10.1016/i.bei.2	Cvanobacteria are a rich source of many natural biopigments that	Bolatkhan, K., Zadneprovskava
	potential and	022 108640	are of high commercial value. In the market, high-based pigments	E V Chang J
	optimization	0221100010	are usually sold as extracts to reduce purification costs. Various	
	strategies		cell disruption methods are used for pigment extraction, such as	
	ollalogiool		sonication homogenization high pressure supercritical CO2	
			extraction, enzymatic extraction, as well as other promising novel	
			extraction methods that make the production of cyanobacterial	
			pigments economically viable. In addition a continuous	
			cultivation system is considered the most suitable cultivation	
			mode for large-scale biomass production. However, a major	
			limitation in the large-scale production of cvanobacterial night	
			is the installation and operation costs. Thus, basic and applied	
			research is still needed to overcome such limitations and enable	
			cvanobacteria to enter the global market. This review focuses on	
			various cyanobacterial nigments their applications and current	
			ו ימווטעס טימווטטמטנכוומו טועוווכוונס. נווכוו מטטווטמווטווס. מווע טעווכוונ	1

		biotechnological approaches to increase the production of biopigments for their potential use in the pharmaceutical, food, and cosmetic industries. The current state of production technologies based on either open pond systems or closed photobioreactors was compared. The potential of scientific and technological advances to increase yield and reduce production costs of cyanobacteria biomass-based pigments was also discussed.	
21 Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies	https://doi.org/10.1 016/j.bej.2022.108 640 IF 4.446 Q1 Percentile 81% H-index 130	Increasing awareness of the harmful effects of synthetic colorants has led consumers to favor the use of natural alternatives such as plant or microbial pigments in food and cosmetics. Cyanobacteria are a rich source of many natural biopigments that are of high commercial value. In the market, bio-based pigments are usually sold as extracts to reduce purification costs. Various cell disruption methods are used for pigment extraction, such as sonication, homogenization, high pressure, supercritical CO ₂ extraction, enzymatic extraction, as well as other promising novel extraction methods that make the production of cyanobacterial pigments economically viable. In addition, a continuous cultivation system is considered the most suitable cultivation mode for large-scale biomass production. However, a major limitation in the large-scale production of cyanobacterial pigments is the installation and operation costs. Thus, basic and applied research is still needed to overcome such limitations and enable cyanobacteria to enter the global market. This review focuses on various cyanobacterial pigments, their applications, and current biotechnological approaches to increase the production of biopigments for their potential use in the pharmaceutical, food, and cosmetic industries. The current state of production technologies based on either open pond systems or closed photobioreactors was compared. The potential of scientific and technological advances to increase yield and reduce production costs of cyanobacteria biomass-based	Sandugash K. Sandybayeva, Bekzhan D. Kossalbayev, Bolatkhan K. Zayadan, Asem K. Sadvakasova, Kenzhegul Bolatkhan, Elena V. Zadneprovskaya, Ardak B. Kakimova, Saleh Alwasel, Yoong Kit Leong, Suleyman I. Allakhverdiev, Jo-Shu Chang, Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies, Biochemical Engineering Journal, Volume 187, 2022, 108640, ISSN 1369-703X, https://doi.org/10.1016/j.bej.202 2.108640. (https://www.sciencedirect.com/ science/article/pii/S1369703X2 2003096.)

22	Biohydrogen	https://doi.org/10.1	A limited supply of oil prompts the search for non-traditional	Bekzhan D. Kossalbayev, Ardak
	production by novel	016/j.jhvdene.2022	energy sources to replace traditional ones. This makes hydrogen	B. Kakimova, Kenzhegul
	cyanobacterial	.03.126	gas an appealing alternative source. Photosynthetic organisms	Bolatkhan, Bolatkhan K.
	strains isolated from	International	capture sunlight very efficiently and convert it into organic	Zayadan, Sandugash K.
	rice paddies in	Journal of	molecules. A promising wild strain was isolated for the first time,	Sandybayeva, Ayshat
	Kazakhstan	Hydrogen Energy.	from the rice paddies of Kazakhstan (Kyzylorda and Almaty	M. Bozieva, Asemgul K.
		Q-1, процентиль –	regions), which can be considered as one of the most active	Sadvakasova, Saleh Alwasel,
		90.	hydrogen producers compared to the literature. The result	Sulevman I. Allakhverdiev.
			showed that among the 13 isolated and collection cvanobacterial	Biohydrogen production by
			strains, Synechocystis sp. S-1 is the most active H ₂ producer	novel cyanobacterial strains
			(2.35 µmol H ₂ mg ⁻¹ Chl a h ⁻¹) in the light. In contrast, the wild-	isolated from rice paddies in
			type cyanobacterium Anabaena variabilis A-1 had higher	Kazakhstan//International
			productivity, nitrogenase activity, and a stronger capacity to	Journal of Hvdrogen Energy, Q-
			produce hydrogen in the dark (8.67 µmol H ₂ mg ⁻¹ Chl a h ⁻¹),	1,процентиль – 90.
			which matched the maximum yield obtained in the research. The	https://doi.org/10.1016/j.ijhyden
			metabolic modulation performed significantly increased hydrogen	e.2022.03.126.
			production. The highest photohydrogen production rate was	
			observed in cells incubated with 25 µmol HEPES and 50 µmol	
			sodium bicarbonate (NaHCO ₃).	
23	Equine lactoferrin:	DOI	Lactoferrin is a minor whey protein known for its	Narmuratova, Zhanar;
	Antioxidant	10.1016/j.lwt.2022.	multifunctionalities, particularly for its rule in regulation of immune	Hentati, Faiez;
	properties related to	113426	system and for its antimicrobial activities. Although bovine	Girardet, Jean-Michel;
	divalent metal	LWT	lactoferrin has been extensively studied, very few information	Narmuratova, Meyramkul;
	chelation	Том 1611	exists on lactoferrin from mare's milk. This article studies the	Cakir-Kiefer, Céline
		May 2022	antioxidant properties via metal chelation of purified lactoferrin	
		Номер	from Kazakhstan mare's milk. Equine lactoferrin shows free	
		статьи 113426	radical-scavenger activity when tested with radical DPPH and	
		Q1,	ABTS and has reducing capacities testing by FRAP. Moreover,	
		процентиль – 87%	the ferrous(II) and copper(II) ion-chelating power is highlighted by	
			chemical colorimetric tests. Finally, the newly introduced	
			biophysics switchSENSE® technology allowed to measure in real	
			time the molecular interactions between equine lactoferrin and	
			divalent cations. The order of magnitude of the KD values was	
			tens or so μ M for the four metal ions tested: Zn2+ (KD = 23.9 ±	
			4.0 μM), Ca2+ (KD = 28.2 ± 4.4 μM), Cu2+ (KD = 43.5 ± 5.1 μM)	
			and Fe2+ (KD = 54.1 \pm 8.9 μ M). According to these results, we	
			can conclude that equine lactoferrin shows antioxidant activity by	
			radical-scavenging mechanism, reducing capacities and divalent	
			pro-oxidant metals chelation ability	

24	Technological	Journal of	Anaerobic digestion consists of the biological decomposition of	<u>Gulnar Dauletbaevna</u>
	Process of	Ecological	organic waste under anaerobic conditions by various types of	<u>Ultanbekova</u> ,
	Anaerobic Digestion	Engineering, 2022,	microorganisms. The purpose of this study was to evaluate the	<u>Gaukhar Madykhanovna</u>
	of Cattle Manure in a	23(7), стр. 131–	effect of the fermentation starter of methanogenic bacteria on the	<u>Salkhozhayeva,</u>
	Bioenergy Plant	142	anaerobic digestion of cattle manure in a bioenergy plant. The	Karlygash Mamytbekovna
			effect of various methods (physical, microbiological and	<u>Abdiyeva,</u>
			chemical) on the digestion of cattle manure was studied under	Sholpan Yescuatovna
			mesophilic (35°C) and thermophilic (50°C) modes. The results of	<u>Arystanova</u>
			the study showed that the content of volatile fatty acids and the	
			pH of the medium was in the optimal range, the yield of methane	Technological Process of
			biogas (CH4) during anaerobic digestion at t-35°C was 0.45	Anaerobic Digestion of Cattle
			m3/kg and at t-50°C 0.58 m3/kg. The data obtained indicate that	Manure in a Bioenergy Plant
			the thermophilic mode (50°C) of anaerobic digestion of manure	
			effectively affects the yield of methane biogas. Based on	Journal of Ecological
			anaerobic digestion in mesophilic mode, a fermentation starter of	Engineering, 2022, 23(7), стр.
			methanogenic cultures adapted to thermophilic conditions was	131–142
			obtained. According to cultural and morphological characteristics,	
			the cultures were assigned to the genera Methanopyrus and	DOI: https://doi.org/10.12911/2
			Methanococcus. The results of a study on the effect of the	2998993/149516
			fermentation starter of methanogenic bacteria in fermented	
			manure at t-50°C showed that with an increase in the dose of the	Оглавление: <u>http://www.jeeng.</u>
			fermentation starter, the methane-forming ability of anaerobic	net/lssue-7-2022,10562
			bacteria increased and the process of methane biogas release	Статья: <u>http://www.jeeng.net/T</u>
			intensified (from 0.36 m3/kg to 0.79 m3/kg). Besides, the dose of	echnological-Process-of-
			methanogenic fermentation starter based on Methanopyrus and	Anaerobic-Digestion-of-Cattle-
			Methanococcus isolates (28 kg) was determined. When the	Manure-in-a-Bioenergy-
			bioenergy plant is launched in thermophilic mode, the release of	Plant,149516,0,2.html
			biogas increases by 2.2 times, and the digestion period	
			decreases to 10 days.	
25	GENES AND	Вестник КазНУ.	Atherosclerosis is a complex multifactorial disease. miRNAs,	O.Yu. Yurikova,
	MIRNAS INVOLVED	Серия	single-stranded RNA molecules may play an important role in the	T.I.Abdullayeva, Sh.A.
	IN THE	экологическая	regulation genes expression which involved in atherosclerosis.	Atambayeva, A. Bekenkali
	DEVELOPMENT OF	No4 (73). 2022	The work studied binding of miRNAs with mRNA of genes	GENES AND MIRNAS
	ATHEROSCLEROSI	https://doi.org/10.2	responsible for development of human atherosclerosis. Based	INVOLVED IN THE
	S	6577/EJE.2022.v7	on the literature data of PubMed, a database of 14 genes	DEVELOPMENT OF
		3.i4.07	sequences associated with development of atherosclerosis was	ATHEROSCLEROSIS
			created. The miRNA binding sites in mRNAs of the studied	Вестник КазНУ. Серия
			genes were found using the miRWalk, miRTarBase,	экологическая No4 (73). 2022
			TargetScan, miRDB, and MirTarget programs. 94 binding sites of	

			51 miRNAs were revealed in mRNA of genes responsible for the development of atherosclerosis. Of the studied binding sites, 15 sites are located in CDS, 17 in 5 UTR, and 62 in 3 UTR. It was defined that some mRNAs of genes have several binding sites with miRNAs. Thus, TNFRSF9 has 15, LDLR – 11 binding sites, TGFB1 – 14 binding sites. It was shown that miR-619-5p more frequently than others binds to mRNA of genes responsible for the development of atherosclerosis. miR-619-5p binds to CD36 with a $\Delta G/\Delta Gm$ ratio of 100%, miR-5096 with a $\Delta G/\Delta Gm$ equal to 100% binds to IL18. Among the studied genes, TGFB1 is the most preferred target of miRNA with high values of interaction, indicating the degree of miRNA binding to mRNA. Thus, using miRWalk, miRTarBase, TargetScan, and miRDB programs, it was shown that mRNA of TGFB1 is a target for many miRNAs in CDS, 5'UTR, and 3'UTR regions. Key words: miRNA, mRNA, binding sites, atherosclerosis, CDS, 5'UTR, 3'UTR, and nucleotide sequences.	nttps://doi.org/10.26577/EJE.20 22.v73.i4.07
26	Phytoremediation of Soil Contaminated by Organochlorine Pesticides and Toxic Trace Elements: Prospects and Limitations of Paulownia tomentosa	Toxics Том 10, Выпуск 8August 2022 Номер статьи 465 DOI 10.3390/toxics1008 0465 Q3 62-й процентиль	Paulownia tomentosa (Thunb.) Steud is a drought-resistant, low- maintenance and fast-growing energy crop that can withstand a wide range of climatic conditions, provides a high biomass yield (approximately 50 t DM ha-1 yr-1), and develops successfully in contaminated sites. In Kazakhstan, there are many historically contaminated sites polluted by a mixture of xenobiotics of organic and inorganic origin that need to be revitalised. Pilot-scale research evaluated the potential of P. tomentosa for the phytoremediation of soils historically contaminated with organochlorine pesticides (OCPs) and toxic trace elements (TTEs) to minimise their impact on the environment. Targeted soils from the obsolete pesticide stockpiles located in three villages of Talgar district, Almaty region, Kazakhstan, i.e., Amangeldy (soil A), Beskainar (soil B), and Kyzylkairat (soil K), were subjected to research. Twenty OCPs and eight TTEs (As, Cr, Co, Ni, Cu, Zn, Cd, and Pb) were detected in the soils. The phytoremediation potential of P. tomentosa was investigated for OCPs whose concentrations in the soils were significantly different (aldrin, endosulfans, endrin aldehyde, HCB, heptachlor, hexabromobenzene, keltan, methoxychlor, and γ -HCH) and for TTEs (Cu, Zn, and Cd) whose concentrations exceeded	Mamirova A.;Baubekova, Almagul; Pidlisnyuk, Valentina Shadenova, Elvira; Djansugurova, Leyla; Jurjanz, Stefan

			maximum permissible concentrations. Bioconcentration (BCF) and translocation (TLF) factors were used as indicators of the phytoremediation process. It was ensured that the uptake and translocation of contaminants by P. tomentosa was highly variable and depended on their properties and concentrations in soil. Besides the ability to bioconcentrate Cr, Ni, and Cu, P. tomentosa demonstrated very encouraging results in the accumulation of endosulfans, keltan, and methoxychlor and the phytoextraction of γ -HCH (TLFs of 1.9–9.9) and HCB (BCFs of 197–571). The results of the pilot trials support the need to further investigate the potential of P. tomentosa for phytoremediation on a field scale	
27	The Coal Humic Product EldORost Shows Fertilizing and Growth Stimulating Properties on Diverse Agricultural Crops	Адгопоту Том 12, Выпуск 12December 2022 Номер статьи 3012 DOI 10.3390/agronomy 12123012 Q2 73-й процентиль	The use of environmentally safe products of natural origin is a global trend today. A particular point of interest is the use of humic fertilizers. This is due to the growing awareness of the positive impact of humic substances on plant growth and development as well as on the quality of agricultural products and soil fertility. Humates are physiologically active substances. As a result, they regulate and intensify metabolic processes in plants and soil, and contribute to the bioavailability of nutrients to plants. EldORost is a new-generation humic product that contains humic substances with a high humification degree. In addition to humates, this product contains a complex of amino acids, macro-, and microelements in a bioavailable form for plants. The product is eco-friendly and completely soluble in water, which is a substantial advantage for drip irrigation systems. It can be used for all types of agricultural crops on a wide diversity of soils and climatic zones. It displays the properties of plant hormones while its optimum concentration is as low as 0.0001% (wt). The efficiency of this novel humic product was tested in laboratory and field tests conducted on potatoes and vegetable crops (tomatoes, cucumbers, cabbage, carrots, onions, beets). The obtained results showed high efficiency displayed in the significantly improved sowing quality of vegetable seeds, nominally increased the growth of biomass, increased the fruiting period, and reduced maturation on the yield of potatoes and vegetable crops. The obtained data allowed us to characterize this novel humic product	Zhilkibayev, Oral T.; Aitbayev, Temirzhan E.; Zhirkova, Anastasiya M.; Perminova, Irina V.; Popov, Alexander I., Shoinbekova, Sabina A. Kudaibergenov, Mukhtar S.; Shalmaganbetov, Kairzhan M.

			from the perspective of an eco-friendly fertilizer and growth	
			promoter	
28	Organ-specific	PeerJ	Iron deficiency is a well-known nutritional disorder, and the	Kenzhebayeva S.;
	expression of genes	Том 10June 2022	imbalance of trace-elements, specifically iron, is the most	Atabayeva, Saulea;
	involved in iron	Номер статьи	common nutrient deficiency of foods across the world, including	Sarsu, Fatma;
	homeostasis in	e13515	in Kazakhstan. Wheat has significant nutritional relevance,	Abekova, Alfiya;
	wheat mutant lines	DOI	especially in the provision of iron, however many bread wheat	Shoinbekova, Sabina;
	with increased grain	10.7717/peerj.1351	varieties have low iron despite the need for human nourishment.	Omirbekova, Nargul;
	iron and zinc content	5	In this study, the expression profiles of wheat homologous genes	Doktyrbay, Gulina;
			related to iron homeostasis were investigated. The work resulted	Beisenova, Aizhan;
			in the development of two new M5 mutant lines of spring bread	Shavrukov, Yuri
			wheat through gamma-irradiation (200 Gy) with higher grain iron	
			and zinc content, lower phytic acid content, and enhanced iron	
			bioavailability compared to the parent variety. Mutant lines were	
			also characterized by higher means of yield associated traits such	
			as grain number per main spike, grain weight per main spike,	
			grain weight per plant, and thousand-grain weight. Methods: The	
			homologous genes of bread wheat from several groups were	
			selected for gene expression studies exploring the tight control of	
			iron uptake, translocation rate and accumulation in leaves and	
			roots, and comprised the following: (1) S-adenosylmethionine	
			synthase (SAMS), nicotianamine synthase (NAS1),	
			nicotianamine aminotransferase (NAAT), deoxymugineic acid	
			synthetase (DMAS), involved in the synthesis and release of	
			phytosiderophores; (2) transcription factor basic helix-loop-helix	
			(bHLH); (3) transporters of mugineic acid (TOM), involved in long-	
			distance iron transport; (4) yellow stripe-like (YSIA), and the	
			vacuolar transporter (VIT2), involved in intracellular iron transport	
			and storage; and lastly (5) natural resistance-associated	
			macrophage protein (NRAMP) and ferritin (Fer1A). Results: The	
			wheat homologous genes IaSAMS, IaNAS1, and IaDMAS,	
			were significantly up-regulated in the roots of both mutant lines	
			by 2.1-4.7-fold compared to the parent variety. The combined	
			over-expression of TaySIA and TaVI12 was also revealed in the	
			roots of mutant lines by 1.3-2.7-fold. In one of the mutant lines,	
			genes encoding intracellular iron transport and storage genes	
			TAINKAIVIP and TAFEFTA-D showed significant up-regulation in	
			roots and leaves (by 1.4- and 3.5-rold, respectively). The highest	
1			expression was recorded in the transcription factor labHLH,	

			which was expressed 13.1- and 30.2-fold in the roots of mutant lines. Our research revealed that genotype-dependent and organ-specific gene expression profiles can provide new insights into iron uptake, translocation rate, storage, and regulation in	
			wheat which aid the prioritization of gene targets for iron	
29	Plant Probiotic Endophytic Pseudomonas flavescens D5 Strain for Protection of Barley Plants from Salt Stress	https://doi.org/10.3 390/su142315881	Soil salinity has become a global issue that is directly related to land degradation and results in many changes in climate, ecosystem services, and biodiversity. The present study focuses on the investigation of beneficial properties of a plant probiotic bacterial strain as an eco-friendly and sustainable approach to promote crop growth in saline soil. The endophytic halotolerant strain <i>Pseudomonas flavescens</i> D5 isolated from common chicory (<i>Cichorium intybus</i> L.) was able to grow on a medium containing 15% NaCl; produced indole-3-acetic acid (45.2 µg mL ⁻¹) and polyhydroxyalkanoate (1.72 g L ⁻¹); and had amylolytic, cellulolytic, and proteolytic activities. Polyhydroxyalkanoate had a pronounced antifungal activity against <i>Fusarium graminearum,</i> <i>F. solani, F. oxysporum,</i> and <i>Alternaria alternata</i> .	Ignatova L., Usmanova A., Brazhnikova Y., Omirbekova A. et al. Plant Probiotic Endophytic Pseudomonas flavescens D5 Strain for Protection of Barley Plants from Salt Stress // Sustainability. – 2022. – Vol. 14 (23) 15881. https://www.mdpi.com/2071- 1050/14/23/15881
30	Скрининг эффективных микроскопических грибов, способствующих улучшению роста и развития растений	https://doi.org/10.2 6577/EJE.2022.v7 3.i4.09	В статье представлены данные по отбору штаммов микромицетов, выделенных из агроценозов зерновых и кормовых культур Казахстана, улучшающих рост растений и обладающих способностью повышать доступность для них элементов питания. В результате проведенного скрининга из 44 штаммов было отобрано 2, показавших наибольшую активность и обладающих сразу несколькими ценными свойствами. Отобранные эффективные микромицеты оказывали положительное влияние на физиологические процессы растений (морфометрические показатели и фотосинтез), а также повышали доступность элементов питания (фосфор и калий).	Игнатова Л., Усманова А., Бражникова Е., Омирбекова А. и др. Скрининг эффективных микроскопических грибов, способствующих улучшению роста и развития растений // Вестник КазНУ, Серия экологическая. – 2022. – Том 73, № 4, с. 90 - 98
31	Review Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity	https://doi.org/10.3 389%2Ffnut.2022. 1029324	The oral cavity is a key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems. The oral microbiota is a vital part of the human microbiome. It has been developed through mutual interactions among the environment, host physiological state, and microbial community composition. Indigenious microbiota of the oral cavity is one of the factors that prevent adhesion and invasion of pathogens on the mucous membrane, i.e., the	Akimbekov, N. S., Digel, I., Yerezhepov, A. Y., Shardarbek R. S. (2022). Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity. Frontiers in Nutrition.; 9: 1029324.

			development of the infectious process and thereby participating	
			in the implementation of one of the mechanisms of local	
			immunity-colonization resistance. The balance between bacterial	
			symbiosis microbial virulence and host resistance ensures the	
			integrity of the oral cavity. In this review we have tried to address	
			how nutritional factors influence integrity of the oral indigenous	
			microbiota and its involvement in colonization resistance	
32	Review	https://doi.org/10.1	Lysostanhin is a potent bacteriolytic enzyme with endopentidase	Zhaulliu Su Z
02		021/acs jafc 2c034	activity against the common pathogen Staphylococcus aureus	Akimbekov N S $\&$ Wu X
	Lysostaphin:	59	By digesting the pentaglycine crossbridge in the cell wall	(2022). Lysostaphin:
	Engineering and		peptidoglycan of S, aureus including the methicillin-resistant	Engineering and Potentiation
	Potentiation toward		strains lysostaphin initiates rapid lysis of planktonic and sessile	toward Better Applications
	Better Applications		cells (biofilms) and has great potential for use in agriculture food	Journal of Agricultural and Food
	Detter Applicatione		industries and pharmaceutical industries. In the past few	Chemistry 70 37 11441–
			decades there have been tremendous efforts in potentiating	11457
			lysostaphin for better applications in these fields including	
			engineering of the enzyme for higher potency and lower	
			immunogenicity with longer-lasting effects formulation and	
			immobilization of the enzyme for higher stability and better	
			durability and recombinant expression for low-cost industrial	
			production and in situ biocontrol. These achievements are	
			extensively reviewed in this article focusing on applications in	
			disease central feed preservation surface decentamination and	
			usease control, 1000 preservation, surface decontainination, and	
			patrogen detection. In addition, some basic properties of	
			respective are superpreted including the substrate hinding	
			recently are summarized, including the substrate-binding	
			properties, the number of zinc-binding sites, the substrate range,	
			and the cleavage site in the pentaglycine crossbridge. Resistance	
			to lysostaphin is also highlighted with a focus on various	
			mechanisms. This article is concluded with a discussion on the	
			limitations and future perspectives for the actual applications of	
	Deels ehenten	http://doi.org/40.4	iysostapnin.	Alvimbalay N.C. Disal I
33	BOOK chapter	<u>nups://doi.org/10.1</u>	vitamin u plays an essential role in calcium and inorganic	AKIMDEKOV, N. S., DIGEI, I.,
	Vitamin David	01/9/8-3-030-	priosphale (PI) nomeosiasis, maintaining their optimal levels to	Shereikhan, D. K., & Razzaque,
	Vitamin D and	<u>91023-7_5</u>	assure adequate bone mineralization. Vitamin D, as calcitrio	IVI. 5. (2022). VItamin D and
	Phosphate		(1,25(UH)/2D), not only increases intestinal calcium and	Phosphate Interactions in
	Interactions in		prospriate absorption but also facilitates their renal reabsorption,	Health and Disease. In M. S.
	Health and Disease		leading to elevated serum calcium and phosphate levels. The	Razzaque (Ed.), Phosphate
			interaction of 1,25(OH)2D with its receptor (VDR) increases the	Metabolism: From Physiology

			efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25(OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.	to Toxicity (pp. 37-46). Springer International Publishing.
34	Original article Antimicrobial Properties of the Triclosan-Loaded Polymeric Composite Based on Unsaturated Polyester Resin: Synthesis, Characterization and Activity	https://doi.org/10.3 390/polym1404067 6	The manufacturing of sanitary and household furniture on a large scale with inherently antimicrobial properties is an essential field of research. This work focuses on the synthesis of polymer composites based on the unsaturated polyester of resin loaded with 5 wt.%-Triclosan produced by a co-mixing approach on automated technological complex with a potential for broad applications. According to findings, the polymer composite has a non-porous structure (surface area < 1.97 m2/g) suitable for sanitary applications to reduce the growth of bacteria. The chemical composition confirmed the presence of major elements, and the inclusion of Triclosan was quantitatively confirmed by the appearance of chlorine on XRF (1.67 wt.%) and EDS (1.62 wt.%) analysis. Thermal analysis showed the difference of 5 wt.% in weight loss, which confirms the loading of Triclosan into the polymer matrix. The polymer composite completely inhibited the strains of S. aureus 6538-P, S. aureus 39, S. epidermidis 12228, and KI. Pneumoniae 10031 after 5-min contact time. The antimicrobial effects against KI. pneumoniae 700603, Ps. aeruginosa 9027 and Ps. aeruginosa TA2 strains were 92.7%, 85.8% and 18.4%, respectively. The inhibition activity against C. albicans 10231 and C. albicans 2091 was 1.6% and 82.4%, respectively; while the clinical strain of C. albicans was inhibited by 92.2%. The polymer composite loaded with 5 wt.%-Triclosan	Tauanov, Z., Zakiruly, O., Baimenova, Z., Baimenov, A., Akimbekov, N. S., & Berillo, D. (2022). Antimicrobial Properties of the Triclosan-Loaded Polymeric Composite Based on Unsaturated Polyester Resin: Synthesis, Characterization and Activity. Polymers, 14(4).

			displayed a stability over the period that illustrates the possibility	
			of washing the composite surface.	
35	Role of Vitamins in Maintaining Structure and Function of Intestinal Microbiome Book chapter	https://doi.org/10.1 016/B978-0-12- 819265-8.00043-7	The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota.	Akimbekov, N. S., Digel, I., & Razzaque, M. S. (2022). 1.24 – Role of Vitamins in Maintaining Structure and Function of Intestinal Microbiome. In M. Glibetic (Ed.), Comprehensive Gut Microbiota (pp. 320-334). Elsevier.
36	Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production	https://doi.org/10.3 390/biology110913 06	It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal- mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.	Akimbekov, N.S., Digel, I., Tastambek, K.T., Turaliyeva, M.A., Kaiyrmanova, G.K. (2022). Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production Biology, 11(9), 1306.
37	Изучение	10.26577/EJE.202	Натуральный каучук – это растительный биополимер,	М.С. Муталханов, А.А.
	содержания	2.v71.i2.010	который используется во многих отраслях промышленности,	Альнурова, К.Р. Сисемали,
	хлорофилла и		например, в медицине, машиностроении и т.д. Тау-сагыз	А.И. Акильбекова, М.К.
	каротиноидов в		(лат. Scorzonera tau-saghyz Lipsch et Bosse) – полукустарник,	Таусарова, Ж.М. Басыгараев,

	листьях тау-сагыза		произрастающий на территории Южного Казахстана,	К.К. Богуспаев. Изучение
	(Scorzonera tau-		способный производить и накапливать натуральный каучук в	содержания хлорофилла и
	<i>saghyz</i> Lipsch et		корнях. Экономическая ценность тау-сагыза определяется	каротиноидов в листьях тау-
	Bosse) из		количеством и качеством синтезируемого	сагыза (Scorzonera tau-saghyz
	различных эколого-		натуральногокаучука. Соответственно, для введения тау-	Lipsch et Bosse) из различных
	географических		сагыза в культуру и создания экономически жизнеспособной	эколого-географических мест
	мест обитания в		культуры каучуконоса, определение факторов, связанных с	обитания в горах Каратау для
	горах Каратау для		повышенным содержанием каучука является	определения связи с
	определения связи		первостепенной задачей. По утверждению М.В. Культиасова	накоплением каучука в
	с накоплением		«Чем больше развита листовая масса, тем большая	корнях. Вестник Серия
	каучука в корнях		корневая масса должна ей соответствовать, т.е. листовая	экологическая. №2 (71). 103-
			масса является косвенным критерием урожая корневой	111. DOI:
			массы. Отсюда следует вывод: лист может служить	10.26577/EJE.2022.v71.i2.010
			критерием оценки накопления каучука в корневой	
			массе».Поскольку основная функция листьев-фотосинтез, то	
			в связи с этим в наших экспериментахколичество	
			фотосинтетических пигментов в листьях было выбрано в	
			качестве фактора,возможно, определяющего уровень	
			накопления каучука в корнях. Таким образом нами было	
			выбрано 3 группы растений из различных мест обитания	
			(северный склон,восточный склон, южный склон хребта	
			Терис-аккан). Из отобранных образцов листьев ацетоном	
			экстрагировали фотосинтетические пигменты, а из корней	
			этих же образцов с использованием гексана экстрагировали	
			каучук. Полученные данные количественного анализа	
			проверяли с использованием следующих статистических	
			методов: т-критерия Стьюдента и коэффициента корреляции	
			Пирсона. Результаты показали наличие статистически	
			значимой разницы междугруппами в количестве	
			фотосинтетических пигментов, а также показали отсутствие	
			разницы между группами в количестве каучука.	
			Корреляционный анализ показал очень слабую связь между	
			количеством пигментов в листьях и процентным	
			содержанием каучука в корнях во всех трех группах. Таким	
			образом, показано, что количество фотосинтетических	
			пигментов не влияетна процессы накопления каучука в	
			корнях.	
38	Earthworms:	ISBN: 978-601-	The book "Earthworms: biology, scientific and practical basis of	I.N. Titov, K.K. Boguspayev,
	biology, scientific	7667-58-0	vermitechnology" is the most comprehensive practical guide on	R.K. Sinha, S. Singh, B.M.

and practical basis	earthworms and vermiculture technology and has been written to	Diumakhanov, Earthworms:
of vermitechnology	reflect the latest scientific and practical developments in the	biology, scientific and practical
0,	field the book is divided into 12 chapters. Each chapter provides	basis of vermitechnology. "Asyl
	an analytical overview of current scientific data and achievements	kitap" publishing house. 2022.
	and priorities for future research. The book contains scientific and	ISBN: 978-601-7667-58-0
	practical information about the place and role of the earthworms	
	in the global ecosystems, different types of earthworm species	
	present in soil their anatomy, biology, physiology and	
	biochemistry.	
	All known technologies of vermicomposting of different organic	
	wastes using different types and species of waste eater	
	earthworms in the world are described in detail. The criteria for	
	determining the quality and standards of vermicompost as a	
	nutritive organic fertilizer giving high productivity of nutritive	
	organic foods are described, and the results of modern physio-	
	chemical, biological and molecular biological research methods	
	to determine the quality and maturity of vermicompost are also	
	analyzed. Methods of obtaining and using various earthworms &	
	vermicompost-based biological compounds	
	such as vermiwash (body fluid of earth worms) and vermicompost	
	tea (fermented solution of vermicompost) for their use as safe	
	biopesticides to protect the crops from pests and diseases have	
	also been described.	
	The benefits & advantages of the new and innovative	
	vermitilitration technology for wastewater treatment by	
	earthworms and reuse of the verminitered clean (disinfected	
	and detoxined) nutritive water (nch in NKP) in farm and garden	
	ingation saving nuge	
	The back also inform that earthworms are a unique and fast	
	multiplying organism for producing large amount of complete	
	animal proteins rich in all essential amino acids tor use as vermi-	
	meals cattle noultry & fish farming and also as an anti-pathogenic	
	and biologically active substances for use as vermi-medicines in	
	pharmaceutical industries.	
	The book will inspire the students, teachers and researchers in	
	earthworms & vermiculture for increasing their scientific	
	knowledge. It will also also inspire inspire the the farmers (the	

			feeders of nations) and the gardeners and the producers of organic fertilizers to promote organic farming in world for production of chemical-free, nutritive and health protective foods for the global human society.	
39	Evaluation of the impact of varied biochars produced from <i>M.</i> × giganteus waste and application rate on the soil properties and physiological parameters of <i>Spinacia oleracea</i> L.	https://doi.org/10.1 016/j.eti.2022.1028 98	The use of M. × giganteus in phytoremediation requires treatment of the contaminated biomass, which can be done by pyrolysis to produce biochar. Due to its potentially detrimental properties, the application of biochar in soil remediation must first be evaluated on a test plant to infer how the growth process was affected by the impact on soil parameters. The main goal of the current research was to investigate the effects of waste-derived Miscanthus biochars (from contaminated rhizomes (B1) and aboveground biomass (B2)) on soil properties and evaluate the impact of biochar doses and properties on Spinacia oleracea L. growth. It was revealed that incorporation of B1 at a dose of 5% and B2 at doses of 1, 3, and 5% increased soil organic carbon, pH, K (at 3 and 5%), and P2O5 (at 5% B2). Cultivation of S. oleracea reduced organic carbon, soil pH as a function of biochar dosage, and K, P2O5, NH4, and NO3 content in all treatments tested. The highest biomass yield was recorded at 3% B2. The photosynthetic parameters indicated that the doses of 3 and 5% B2 led to dissociation of light-harvesting complexes. Increasing the biochar dose did not necessarily increase yield or improve photosynthetic parameters. S. oleracea adapted to the initial stress by incorporating biochar and managed to establish a balance between nutrients, water supply, and light. It is recommended that the effects of biochar on the development of the target crop be evaluated through preliminary trials before biochar is applied at field scale.	Kononchuk, O.; Pidlisnyuk, V.; Mamirova, A.; Khomenchuk, V.; Herts, A.; Grycová, B.; Klemencová, K.; Leštinský, P.; Shapoval, P. Evaluation of the Impact of Varied Biochars Produced from <i>M. × giganteus</i> Waste and Application Rate on the Soil Properties and Physiological Parameters of <i>Spinacia oleracea</i> L. Environmental Technology & Innovation 2022, 28, 102898, <u>https://doi.org/10.1016/j.eti.202</u> 2.102898
40	Phytoremediation of Soil Contaminated by Organochlorine Pesticides and Toxic Trace Elements: Prospects and Limitations of Paulownia tomentosa	https://doi.org/10.3 390/toxics1008046 5	Paulownia tomentosa (Thunb.) Steud is a drought-resistant, low- maintenance and fastgrowing energy crop that can withstand a wide range of climatic conditions, provides a high biomass yield (approximately 50 t DM ha 1 yr 1), and develops successfully in contaminated sites. In Kazakhstan, there are many historically contaminated sites polluted by a mixture of xenobiotics of organic and inorganic origin that need to be revitalised. Pilot-scale research evaluated the potential of P. tomentosa for the phytoremediation of soils historically contaminated with	Mamirova, A.; Baubekova, A.; Pidlisnyuk, V.; Shadenova, E.; Djansugurova, L.; Jurjanz, S. Phytoremediation of Soil Contaminated by Organochlorine Pesticides and Toxic Trace Elements: Prospects and Limitations of <i>Paulownia tomentosa</i> . Toxics

			organachloring posticidos (OCPs) and toxic trace elements	2022 10 465
			(TTEs) to minimise their impact on the environment Targeted	bttps://doi.org/10.3300/toxics10
			soils from the obsolete pesticide stockpiles located in three	080465
			villages of Talgar district Almaty region Kazakhstan i o	000405
			Amangoldy (soil A) Boskainar (soil B) and Kyzylkairat (soil K)	
			Analyzeidy (soli A), beskalilar (soli b), and Kyzyikaliar (soli K),	
			Cr. Co. Ni. Cu. Zn. Cd. and Db) ware detected in the soils. The	
			CI, CO, NI, CU, ZII, CU, and PD) were detected in the solis. The	
			phytoremediation potential of P. tomentosa was investigated for	
			OUPS whose concentrations in the solis were significantly	
			different (aldrin, endosulfans, endrin aldenyde, HCB, heptachior,	
			nexabromobenzene, keitan, methoxychior, and -HCH) and for	
			TTES (Cu, Zn, and Cd) whose concentrations exceeded	
			maximum permissible concentrations. Bioconcentration (BCF)	
			and translocation (ILF) factors were used as indicators of the	
			phytoremediation process. It was ensured that the uptake and	
			translocation of contaminants by P. tomentosa was highly	
			variable and depended on their properties and concentrations in	
			soil. Besides the ability to bioconcentrate Cr, Ni, and Cu, P.	
			tomentosa demonstrated very encouraging results in the	
			accumulation of endosulfans, keltan, and methoxychlor and the	
			phytoextraction of -HCH (TLFs of 1.9–9.9) and HCB (BCFs of	
			197–571). The results of the pilot trials support the need to further	
			investigate the potential of P. tomentosa for phytoremediation on	
			a field scale.	
41	The Role of Plant	https://doi.org/10.3	Soil contamination with trace elements (TEs) is a pressing	Pidlisnyuk, V.; Mamirova, A.;
	Growth Regulators	390/agronomy1212	problem limiting the cultivation of agricultural crops; however, the	Newton, R.A.; Stefanovska, T.;
	in <i>Miscanthus ×</i>	<u>2999</u>	non-food energy crop Miscanthus x giganteus (Mxg) can be	Zhukov, O.; Tsygankova, V.;
	giganteus Growth on		grown on such soil. The effect of a new plant growth regulator	Shapoval, P. The Role of Plant
	Trace Elements-		(PGR), Kamethur, and conventional Charkor was studied when	Growth Regulators in
	Contaminated Soils		M×g was cultivated in TE-contaminated soils from Všebo rice and	Miscanthus × giganteus Growth
			Chomutov, in the Northern Czech Republic. Kamethur was	on Trace Elements-
			beneficial for achieving a higher leaves and stem biomass (by	Contaminated Soils. Agronomy
			57.1 and 126%, respectively) in the more contaminated	2022, 12, 2999,
			Všeborice soil, while Charkor increased only the leaves biomass	https://doi.org/10.3390/agronom
			(49.5%). Analysis of the comprehensive bio-concentration index	y12122999
			showed that Charkor decreased stem accumulation of elements	
			essential for plant development (EEs), as well as the potentially	
			toxic (PTEs) elements, by 33.3 and 11.4%, respectively.	
			Kamethur decreased stem accumulation of EEs by 11.4% and	

			increased the accumulation of PTEs by 23.3%. Statistical	
			evaluation of the current results and literature data illustrated the	
			ability of Charkor to reduce the uptake of PTEs, which is critical	
			for converting clean biomass to bioproducts. Further research	
			should confirm the influence of PGRs on the bioparameters and	
			phytoremediation processes of M×g at the field plantation level.	
42	Miscanthus ×	https://doi.org/10.3	The phytoremediation of industrial crops is becoming popular for	Pidlisnyuk, V., Mamirova, A.,
	giganteus	390/agronomv1204	the revitalization of land contaminated by trace elements (TEs).	Pranaw. K., Stadnik. V., Kuráň.
	Phytoremediation of	0771	This approach combines biomass production with the	P., Trögl, J., & Shapoval, P.
	Soil Contaminated		improvement of soil health. To implement phytoremediation and	Miscanthus × giganteus
	with Trace Elements		derive sufficient dry biomass, crop production must be adequately	Phytoremediation of Soil
	as Influenced by the		supported by agricultural practices, including the application of	Contaminated with Trace
	Presence of Plant		bioinoculants. The current study aims to test the influence of	Elements as Influenced by the
	Growth-Promoting		several plant growth-promoting bacteria (PGPB), isolated from	Presence of Plant Growth-
	Bacteria		TEs-contaminated soil—i.e., Stenotrophomonas maltophilia KP-	Promoting Bacteria, Agronomy
			13. Bacillus altitudinis KP-14, and Pseudomonas fluorescens KP-	2022. 12(4). 771.
			16 and their consortia on the phytoremediation of the industrial	https://doi.org/10.3390/agronom
			crop M. \times giganteus cultivated in the same TEs-contaminated	v12040771
			soil. Contrary to expectations, the effects of PGPB on the	<u></u>
			biomass harvest were low. The most significant increase was	
			detected in leaf biomass treated with a consortium of tested	
			PGPBs. More significant effects were detected in the uptake of	
			individual TEs. The phytoparameters of translocation factor.	
			comprehensive bioconcentration index and uptake index were	
			used to characterize the behavior of the TEs: Cr: Mn: Ni: Cu: Zn:	
			Sr: V: and Pb in the presence of isolates. Plants treated with	
			PGPB strains accumulated minimal concentrations of Cu and Pb	
			in their aboveground biomass, while a tendency for Zn	
			accumulation in the leaves and stems, and Sr accumulation in the	
			leaves was observed. The obtained results reveal the	
			combinations of isolates that lead to the minimal uptake of TEs	
			into the stems and the simultaneous increase in DW. This study	
			provides more insight into the leading factors of phytoremediation	
			supported by PGPB and can be helpful when M. × giganteus is	
			grown on TEs-contaminated soils of different origins.	
43	The Short-Term	https://doi.org/10.3	The short-term effects of soil amendments on the structure.	Stefanovska, T.; Skwiercz, A.;
	Effects of	390/agronomy1209	diversity and function of a nematode community of Miscanthus ×	Pidlisnyuk, V.; Zhukov, O.;
	Amendments on	2063	giganteus was investigated. Crop was cultivated on marginal,	Kozacki, D.; Mamirova, A.;
	Nematode		nutrient-poor land amended with biochar in single and double	Newton, R.A.; Ust'ak, S. The

	Communities and		doses (BD1 and BD2), biogas digestate (D), sewage sludge (SS)	Short-Term Effects of
	Diversity Patterns		and hemicellulose waste (HW) Sampling was done after	Amendments on Nematode
	under the Cultivation		planting in the middle and end of vegetation: morphology-based	Communities and Diversity
	of Miscanthus x		approach was used 28 nematode taxa were identified including	Patterns under the Cultivation
	aiganteus on		5 hacterivores genera 4 fungivores genera 5 herbivores genera	of Miscanthus x diganteus on
	Marginal Land		(11 species) 2 omnivores genera 5 predators genera The	Marginal Land Agronomy
	Marginar Land.		apparal linear models, correspondence analysis and clustering	2022 12 2063
			were applied for evaluation. The total abundance of pomatode	2022, 12, 2003, https://doi.org/10.2200/agronom
			teve Filopohue Derulaimue Conhelehue Denegrolaimue	10.3390/agronom
			Applophene and Ditylanitus, Ceptialobus, Fanagiolalitus,	<u>y12092003</u>
			time and amendments. The incorrection of amendments	
			time and amendments. The incorporation of amendments	
			anected hematode rood web and resulted in suppression of plant-	
			parasilic hematodes (PPNs). It was revealed that community	
			structure was more mature for 55, less stable for D and had	
			inconclusive effects for BD1, BD2, and Hw. Using amendments	
			ensured pest control benefits which is important given concern	
			that PPNs can inflict crop damage during increased cultivation of	
			$M \times g$. Further research is needed to examine amendments which	
			can minimise PPNs without reducing populations of nitrogen-	
			fixing bacterivores and fungivores.	
44	Influence of	https://doi.org/10.3	Chenopodium quinoa Willd. is an annual facultative halophytic	Terletskaya, N. V., Erbay, M.,
	Osmotic, Salt, and	<u>390/agriculture130</u>	pseudocereal widely studied for its physiology and grain yield	Zorbekova, A. N., Prokofieva,
	Combined Stress on	<u>10001</u>	owing to its great tolerance to unfavorable growing conditions.	M. Y., Saidova, L. T., &
	Morphophysiological		However, the morphophysiological and anatomical	Mamirova, A. Influence of
	Parameters of		characteristics of plants' photosynthetic organs under various	Osmotic, Salt, and Combined
	Chenopodium		and combined abiotic stresses during the early stages of	Stress on Morphophysiological
	quinoa		development have not been thoroughly studied. Therefore, the	Parameters of Chenopodium
	Photosynthetic		current study compared the influence of osmotic, salt, and	quinoa Photosynthetic Organs.
	Organs		combined stress at different intensities on the morphology and	Agriculture 2023, 13(1), Article
			anatomy of photosynthetic organs in young quinoa plants. The	1.
			main findings demonstrate that salt stress at an intensity between	https://doi.org/10.3390/agricultu
			100 and 200 mM NaCl is not critical for the growth of young	<u>re13010001</u>
			quinoa plants and that the young plants can withstand salt stress	
			at an intensity of 300 mM NaCl. However, it can be concluded	
			that some adaptation mechanisms of the plants were already	
			violated at a salt stress intensity of 200 mM NaCl, while significant	
			changes in the water balance of the plants were observed at an	
			intensity of 300 mM NaCl, possibly caused by damage to the cell	
			structures.	

45	Rhizosphere Microorganisms: Increasing Phytotechnology Productivity and Efficiency – a Review	https://doi.org/10.3 2014/2518- 1483_2022_3_34- 58	The review contains information on rhizobacteria with plant growth promoting properties (PGPR), on plant mechanisms of bacterial defense against heavy metal pollution and on stimulation of plant growth by nitrogen fixation, phosphorus dissolution, siderophores, phytohormones and ACC deaminase enzyme synthesis. PGPRs are classified according to their functionality, the degree of proximity to the root and the closeness of their association with the plant, and the site of bacterial colonization, and information is provided on the taxonomic affiliation of PGPRs. Issues of phytoremediation of soils contaminated with heavy metals and methods to improve process efficiency using rhizospheric microorganism inoculants are highlighted in the review, as phytoremediation is an economically viable and environmentally friendly technology. The review considers the role of association of endophytic and rhizospheric PGPBs with a plant in enhancing the efficiency of phytoaccumulation and phytostabilisation of soils contaminated with toxic metals and plant productivity.	Nurzhanova, A.; Muratova, A.Yu.; Berzhanova, R.; Pidlisnyuk, V.; Nurmagambetova, A.; Mamirova, A. Rhizosphere Microorganisms: Increasing Phytotechnology Productivity and Efficiency – a Review. Scientific journal «Reports of NAS RK» 2022, 34–58, <u>https://doi.org/10.32014/2518-</u> <u>1483_2022_3_34-58</u>
46	Сүт сарысуының микробтық қауымдастығының микробиологиялық көрсеткіштері және таксономиялық құрамын зерттеу.	https://doi.org/10.2 6577/eb.2022.v92.i 3.04	Интерес к биоэтанолу значительно вырос в последние десятилетия не только как к растворителю, антифризу или сырью для производства широкого спектра различных органических соединений, но и в некоторой степени как к биотопливу. Биоэтанол имеет следующие преимущества перед бензином: он меньше загрязняет атмосферу, легко разлагается, имеет высокое октановое число и может использовать для своего производства возобновляемое сырье. Постоянно растущий спрос на биоэтанол требует поиска новых субстратов, более дешевых, чем зерно или картофель. В качестве одного из таких субстратов рекомендуется использовать молочную сыворотку, основным углеводом которой является лактоза. Цель исследования: изучить микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки. В ходе исследования изучены микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки. В ходе исследования изучены микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки. В ходе исследования изучены микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки. В ходе исследования изучены микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки ТОО «Сырзавод «Мерке», ТОО «Амиран» (сыворотка), ТОО «Стелла Альпина» (сырная сыворотка). Из образцов сыворотки выделено 3 штамма	А.А. Жұбанова , Г.Ж. Абдиева , П.С. Уалиева , А.М. Мәлік * Том 92 № 3 (2022): Вестник КазНУ, серия биологическая, С. 36-54. <u>https://doi.org/10.26577/eb.202</u> <u>2.v92.i3.04</u>

			дрожжей и 1 штамм молочнокислых бактерий. В результате предвидовой идентификации культур дрожжей и молочнокислых бактерий штаммы ГБ и ГТ идентифицированы как <i>Kluyveromyces marxianus</i> , штамм М1 - <i>Lactococcus lactis</i> , A1 - <i>Candida inconspicua</i> .	
47	Исследование микробного разнообразие молочной сыворотки и идентификация выделенных чистых культур.	https://doi.org/10.5 4596/2309-6977- 2022-3-68-80	Для молочной промышленности в XXI веке экологичсские проблемы приобретают особую актуальность в связи с истощением ресурсов и необходимостью сохранения окружающей среды. Как в отечественной, так и в мировой практике не решена проблема использования молочной сыворотки, обладающей высокой пищевой и биологической ценностью, и в наибольшей степени загрязняющей сточные воды. В последние годы активно и целенаправление промышленной переработки молочной сыворотки - получение производных компонентов, являющихся целевыми продуктами, в частности, спирта. В связи с вышеизложенным важно изучение микробиологических показателей молочной сыворотки и выделение перспективных культур. Цель исследования: изучение микробного разнообразие молочной сыворотки и и дентификация выделенных чистых культур. В ходе исследования изучены микробиологические показатели и таксономический состав микробного сообщества молочной сыворотки ТОО «Сырзавод «Мерке», ТОО «Амиран» (сыворотка), ТОО «Стелла Альпина» (сырная сыворотки). Изучены физико-химические и органолептические показатели молочной сыворотки. Из образцов сыворотки выделено 1 штамм дрожжей и 1 штамм молочнокислых бактерий. Изучена морфолого-культуральные свойства выделенных дрожкей и молочнокислых бактерий, в результате штаммы Lactococcus lactis М1, Candida	Шукурбек М.Ж*., Уалиева П. С., Абдиева Г. Ж., Мәлік А. М., Таңатар А.Е. Вестник СКУ имени М. Козыбаева. № 3 (55). 2022. С. 68- 80. <u>https://doi.org/10.54596/23</u> 09-6977-2022-3-68-80
48	Effect of the humic	Book of Abstracts	Использование экологически безопасных продуктов	Zhilkibayev O., Aitbayev T.
	drug "EldORost" on	of the Seventh	природного происхождения, а именно гуминовых	Perminova I., Popov A.,
	the yeld of potatoes	International	удобрений, сегодня является мировым трендом, т.к. влияет	Shoinbekova S. Effect of the
	and vegetables /	Conference of the	на рост и развитие растений, на качество	humic drug "EldORost" on the
		CIS IHSS on humic	сельскохозяйственной продукции и плодородие почвы.	yeld of potatoes and vegetables

		innovative technologies "Humic substances and technologies for resilience" (HIT- 2022), Sailing club "Vodnik", Moscow, November 18-–21, 2022. – Р.110 https://doi.org/10.3 6291/HIT.2022.091 Сборник тезисов: https://doi.org/10.3 6291/HIT.2022.091	Описано влияние «ЭлдОРоста» (безбалластный препарат гуминовой природы нового поколения с высокой степенью гумификации). Продукт содержит легкорастворимые физиологически активные соли гуминовых кислот. и фульвокислоты (гуматы и фульваты), комплекс аминокислот, макро- и микроэлементов в форме, доступной для растений. Действует как фитогормоны: оптимальная концентрация препарата составляет 0,0001%. «ЭлдОРост» положительно влияет на урожайность картофеля и основных овощных культур, значительно повышая продуктивность их урожая по сравнению с контролем. Варианты полевого опыта, дополнительная урожайность: капуста - 31,3%, огурцы - 30,2%, томаты - 34,7%, свекла столовая - 28,7%, морковь - 33,3% и картофель - 36,8%.	// Book of Abstracts of the Seventh International Conference of the CIS IHSS on humic innovative technologies "Humic substances and technologies for resilience" (HIT-2022), Sailing club "Vodnik", Moscow, November 18-–21, 2022. – P.110 участие ППС в Международных научных конференциях, сборники которых индексировались в базах данных Thomson Reuters или Scopus; - Scopus
49	Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils	<u>10.1080/00103624.</u> <u>2021.1993884</u>	Biochar is a solid product obtained by heating of biomass or organic waste in the total or partial absence of oxygen and is applied to improve soil properties, or considered a means of carbon sequestration. Several positive effects of biochar on soil chemical, physical, and biological properties have already been demonstrated. Biochar amendment has also been repeatedly discussed as an effective means to restore saline lands and increase plant tolerance to salt stress. Especially, improved soil cation exchange capacity, water holding capacity, soil nutrient retention, and increased soil enzyme activities and diversity of microbial communities, were reported. However, the underlying mechanisms of such beneficial effects provided by biochar amendment of soils are highly complex. Therefore, more in- depth studies are needed to understand biochar interactions with soil organisms under extreme environments, which will help achieve maximum benefits of biochar under saline soil conditions.	Egamberdieva D., Alaylar B., Kistaubayeva A., Wirth S., Bellingrath-Kimura S.D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils Communications in Soil Science and Plant Analysis, 2022, 53(2), cTp. 140–152. DOI: <u>10.1080/00103624.2021.1</u> <u>993884</u>
50	The Effect of Non- Thermal Atmospheric Pressure Plasma	<u>10.1109/TPS.2022.</u> <u>3145831</u>	This contribution presents the results of a study of the germination rate and growth parameters of wheat seeds after atmospheric pressure surface coplanar dielectric barrier discharge (DBD) plasma treatment. The germination rate and	Ussenov Y.A., Akildinova A., Kuanbaevich B.A., Kistaubayeva A., Daniyarov T., Ramazanov T.

	Treatment of Wheat		biometric parameters such as the root, shoot length, mass of the	
	Seeds on		seedlings, and the α -amylase enzyme activity were studied at	The Effect of Non-Thermal
	Germination		different plasma exposure time. The seed coat surface	Atmospheric Pressure Plasma
	Parameters and α -		wettability and morphology were determined by apparent	Treatment of Wheat Seeds on
	Amylase Enzyme		contact angle measurement and scanning electron microscope	Germination Parameters and α-
	Activity		(SEM) analysis. Seed surface disinfection and the presence of	Amvlase Enzyme Activity
			filamentous fungi have also been investigated at different	,,
			discharge parameters. It is shown that the optimal plasma	IEEE Transactions on Plasma
			treatment duration for increasing the growth parameters and	Science, 2022, 50(2), ctp, 330-
			enhancing the enzymatic activity is 5-15 s. It was found that the	340.
			longer plasma exposure requires complete sterilization of the	
			seed surface from pathogens, compared to the optimal	DOI:10.1109/TPS 2022.314583
			treatment time for high germination. Based on the obtained	1
			results, the possible mechanisms of the positive effect of plasma	<u></u>
			treatment on the enhanced germination of wheat seeds are	
			discussed.	
51	Advanced "Green"	10.3390/polym141	Bacterial cellulose (BC) is a biopolymer produced by different	Zhantlessova S., Savitskava I.,
•	Prebiotic Composite	53224	microorganisms, but in biotechnological practice.	Kistaubaveva A., Ignatova L.,
	of Bacterial		Komagataeibacter xylinus is used. The micro- and nanofibrillar	Talipova A., Pogrebniak, A.,
	Cellulose/Pullulan		structure of BC, which forms many different-sized pores, creates	Digel. I.
	Based on Synthetic		prerequisites for the introduction of other polymers into it.	3 - ,
	Biology-Powered		including those synthesized by other microorganisms. The study	Advanced "Green" Prebiotic
	Microbial Coculture		aims to develop a cocultivation system of BC and prebiotic	Composite of Bacterial
	Strategy		producers to obtain BC-based composite material with prebiotic	Cellulose/Pullulan Based on
	3,		activity. In this study, pullulan (PUL) was found to stimulate the	Synthetic Biology-Powered
			growth of the probiotic strain Lactobacillus rhamnosus GG better	Microbial Coculture Strategy
			than the other microbial polysaccharides gellan and xanthan.	
			BC/PUL biocomposite with prebiotic properties was obtained by	Polymers, 2022, 14(15), 3224
			cocultivation of Komagataeibacter xylinus and Aureobasidium	
			pullulans, BC and PUL producers respectively, on molasses	
			medium. The inclusion of PUL in BC is proved gravimetrically by	DOI:10.3390/polvm14153224
			scanning electron microscopy and by Fourier transformed	<u></u>
			infrared spectroscopy. Cocultivation demonstrated a composite	
			effect on the aggregation and binding of BC fibers, which led to	
			a significant improvement in mechanical properties. The	
			developed approach for "grafting" of prebiotic activity on BC	
			allows preparation of environmentally friendly composites of	
1			hetter musiku	

52	Plant Probiotic		Soil salinity has become a global issue that is directly related to	Ignatova L., Usmanova, A.,
	Endophytic		land degradation and results in many changes in climate,	Brazhnikova Y., Omirbekova A.,
	Pseudomonas		ecosystem services, and biodiversity. The present study focuses	Egamberdieva D., Mukasheva
	flavescens D5 Strain		on the investigation of beneficial properties of a plant probiotic	T., Kistaubayeva A., Savitskaya
	for Protection of		bacterial strain as an eco-friendly and sustainable approach to	I., Karpenyuk T., Goncharova A.
	Barley Plants from		promote crop growth in saline soil. The endophytic halotolerant	
	Salt Stress		strain Pseudomonas flavescens D5 isolated from common	Plant Probiotic Endophytic
			chicory (Cichorium intybus L.) was able to grow on a medium	Pseudomonas flavescens D5
			containing 15% NaCl; produced indole-3-acetic acid (45.2 µg	Strain for Protection of Barley
			mL-1) and polyhydroxyalkanoate $(1.72 \text{ g L}-1)$; and had	Plants from Salt Stress
			amylolytic, cellulolytic, and proteolytic activities.	
			Polyhydroxyalkanoate had a pronounced antifungal activity	Sustainability (Switzerland),
			against Fusarium graminearum, F. solani, F. oxysporum, and	2022, 14(23), 15881
			Alternaria alternata. Under salt stress conditions, inoculation	
			with Ps. flavescens D5 increased the shoot biomass of barley	DOI: 10.3390/su142315881
			plants by 8–30%, root biomass by 7–20%, chlorophyll a by $18-$	
			52%, and chlorophyll b by 7–15%. The content of proline	
			decreased by 1.5–1.8 times. An increase in the activity of	
			antioxidant enzymes (catalase, guaiacol peroxidase, and	
			ascorbate peroxidase) was determined. In inoculated plants	
			growing in saline soil, the content of Na+ ions was lower by up	
			to 54.8% compared to control. This strain is promising for	
			stimulating plant growth and protecting them from diseases and	
			other adverse environmental factors, including salt stress.	
53	Advanced "Green"	10.3390/polym141	Bacterial cellulose (BC) is a biopolymer produced by different	Zhantlessova S., Savitskaya I.,
	Prebiotic Composite	53224	microorganisms, but in biotechnological practice,	Kistaubayeva A., Ignatova L.,
	of Bacterial		Komagataeibacter xylinus is used. The micro- and nanofibrillar	Talipova A., Pogrebnjak, A.,
	Cellulose/Pullulan		structure of BC, which forms many different-sized pores, creates	Digel, I.
	Based on Synthetic		prerequisites for the introduction of other polymers into it,	
	Biology-Powered		including those synthesized by other microorganisms. The study	Advanced "Green" Prebiotic
	Microbial Coculture		aims to develop a cocultivation system of BC and prebiotic	Composite of Bacterial
	Strategy		producers to obtain BC-based composite material with prebiotic	Cellulose/Pullulan Based on
			activity. In this study, pullulan (PUL) was found to stimulate the	Synthetic Biology-Powered
			growth of the probiotic strain Lactobacillus rhamnosus GG better	Microbial Coculture Strategy
			than the other microbial polysaccharides gellan and xanthan.	
			BC/PUL biocomposite with prebiotic properties was obtained by	Polymers, 2022, 14(15), 3224
			cocultivation of Komagataeibacter xylinus and Aureobasidium	
			pullulans, BC and PUL producers respectively, on molasses	
			medium. The inclusion of PUL in BC is proved gravimetrically by	

				scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to	DOI: <u>10.3390/polym14153224</u>
				a significant improvement in mechanical properties. The	
				developed approach for "grafting" of prebiotic activity on BC	
				better quality.	
ľ	54	Plant Probiotic		Soil salinity has become a global issue that is directly related to	Ignatova L., Usmanova, A.,
		Endophytic		land degradation and results in many changes in climate,	Brazhnikova Y., Omirbekova A.,
		Pseudomonas		ecosystem services, and biodiversity. The present study focuses	Egamberdieva D., Mukasheva
		flavescens D5 Strain		on the investigation of beneficial properties of a plant probiotic	T., Kistaubayeva A., Savitskaya
		for Protection of		bacterial strain as an eco-friendly and sustainable approach to	I., Karpenyuk T., Goncharova A.
		Barley Plants from		promote crop growth in saline soil. The endophytic halotolerant	
		Salt Stress		strain Pseudomonas flavescens D5 isolated from common	Plant Probiotic Endophytic
				chicory (Cichorium intybus L.) was able to grow on a medium	Pseudomonas flavescens D5
				containing 15% NaCl; produced indole-3-acetic acid (45.2 µg	Strain for Protection of Barley
				mL-1) and polyhydroxyalkanoate $(1.72 \text{ g L}-1)$; and had	Plants from Salt Stress
				amylolytic, cellulolytic, and proteolytic activities.	
				Polyhydroxyalkanoate had a pronounced antifungal activity	Sustainability (Switzerland),
				against Fusarium graminearum, F. solani, F. oxysporum, and	2022, 14(23), 15881
				Alternaria alternata. Under salt stress conditions, inoculation	
				with Ps. flavescens D5 increased the shoot biomass of barley	DOI: 10.3390/su142315881
				plants by 8–30%, root biomass by $7-20\%$, chlorophyll a by 18–	
				52%, and chiorophyli b by 7–15%. The content of proline	
				decreased by 1.5–1.8 times. An increase in the activity of	
				antioxidant enzymes (catalase, gualacol peroxidase, and	
				ascorbate peroxidase) was determined. In inoculated plants	
				growing in saline soil, the content of Na+ ions was lower by up	
				to 54.8% compared to control. This strain is promising for	
				stimulating plant growin and protecting them nom diseases and	
	55	Advanced "Green"	10.2200/nolym1/1	Bactorial collulose (PC) is a biopolymer produced by different	Zhantlassova S. Sovitskova I
	55	Prehiotic Composite	<u>10.3390/p01y11141</u> 53224	microorganisms, but in biotechnological practice	Zhahilessova S., Saviiskaya I., Kistaubayoya A Japatoya J
		of Bactarial	00224	Komagataeibacter willing is used. The micro- and papofibrillar	Talinova Δ Pogrebniak Δ
				structure of BC, which forms many different-sized nores creates	Digel I
		Rased on Synthetic		prerequisites for the introduction of other polymers into it	
		Biology-Powered		including those synthesized by other microorganisms. The study	Advanced "Green" Prehiotic
		Microbial Coculture		aims to develop a cocultivation system of BC and prehiotic	Composite of Bacterial
		Strategy		producers to obtain BC-based composite material with prebiotic	Cellulose/Pullulan Based on
	1		1		

			activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.	Synthetic Biology-Powered Microbial Coculture Strategy Polymers, 2022, 14(15), 3224 DOI: <u>10.3390/polym14153224</u>
56	Coding Complete Genome Sequence of the SARS-CoV-2 Virus Strain, Variant B.1.1, Sampled from Kazakhstan	Microbiology Resource Announcements DOI 10.1128/mra.01114 -22	This article describes the results of sequencing and analysis of the entire genome of the SARS-CoV-2 virus sampled in Kazakhstan in 2021. The whole-genome sequence of the strain was 29,751 bp. According to the results of phylogenetic analysis (according to the Pangolin COVID-19 database), the SARS- CoV-2/human/KAZ/B1.1/2021 strain studied here was assigned to variant B.1.1.	Microbiology Resource Announcements Burashev Y.;Usserbayev, Bekbolata;Kutumbetov, Lespeka;Abduraimov, Yergalia;Kassenov, Markhabata;Kerimbayev, Aslana;Myrzakhmetova, Balzhana;Melisbek, Aibarysa;Shirinbekov, Meirzhana;Khaidarov, Sakenb;Tulman, Edan R.c
57	Evidence for flock transmission of individual subtypes and strains of avian influenza viruses: A monitoring study of wild birds in Kazakhstan	DOI 10.1016/j.virusres. 2022.198898	An active surveillance study of avian influenza viruses (AIVs) in wild birds was carried out in Kazakhstan in 2018–2019. In total, 866 samples were collected from wild birds and analyzed for influenza viruses using molecular and virological tests. Genome segments of Asian, European, and Australian lineages were detected in 25 (4.6%) out of 541 waterfowl samples positive for subtype H3N8, and in two (0.6%) out of 325 H3N8 positive samples from terrestrial birds. No highly pathogenic avian influenza virus (AIV) was detected. The results indicated transmission of closely related strains or identical subtypes of AIVs by a flock-unit of migratory birds or annual cyclical pattern of subtype dominance. The simultaneous circulation of genome segments of the Asian, European and Australian genetic	Sultankulova, K.T., Dzhekebekov, K.K., Orynbayev, M.B.,Zakarya, K.D., Fereidouni, S. <i>Virus Research</i> , 2022, 320, 198898

			lineages of H3N8 AIVs in wild birds in Kazakhstan indicated the important role of Central Asia as a transmission hub of AI viruses linking the East Asian migratory flyways with European flyways and vice versa	
58	Complete Coding Genome Sequence of an Influenza A/H3N8 Equine Virus Isolated in Kazakhstan in 2007	Microbiology Resource Announcements DOI 10.1128/mra.01147 -21	Here, we reported the complete coding sequence of the influenza A/equine/ Otar/3/2007 (H3N8) equine virus, first isolated in Kazakhstan in 2007. The hemagglutinin (HA) sequences of the Kazakhstan isolates appeared to be closely related to viruses isolated in early 2000 in Asia. Phylogenetic analysis characterized the Kazakhstan isolates as a member of the Florida sublineage clade 2 by the HA protein sequence.	Burashev Y.;Orynbayev, Mukhita;Zakarya, Kunsulua;Abduraimov, Yergalia;Kassenov, Markhabat;Strochkov, Vitaliyb;Kozhabergenov, Nurlana;Usserbayev, Bekbolata;Melisbek, Aibarysa;Shirinbekov, Meirzhana;Sypatay, Nuradylb;Sultankulova, Kulyaisan
59	Near-Complete Genome Sequence of a SARS-CoV-2 Variant B.1.1.7 Virus Strain Isolated in Kazakhstan	Microbiology Resource Announcements DOI 10.1128/mra.00619 -22	This research describes the genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) obtained from a patient with symptoms of coronavirus disease 2019 (COVID-19) who was infected in the Republic of Kazakhstan. Strain SARS-CoV-2/ human/KAZ/Britain/2021 consists of 29,815 nucleotides and belongs to lineage B.1.1.7, according to the Pangolin COVID-19 database.	Usserbayev, Bekbolata;Zakarya, Kunsulua;Kutumbetov, Lespeka;Orynbayev, Mukhita;Sultankulova, Kulyaisana;Abduraimov, Yergalia;Myrzakhmetova, Balzhana;Zhugunissov, Kuandyka;Kerimbayev, Aslana;Melisbek, Aibarysa;Shirinbekov, Meiirzhana;Khaidarov, Saken Zhunushov, Asankadyrc;Burashev, Yerbol
60	The Prevalence and Genetic Variants of the CCHF Virus Circulating among Ticks in the Southern Regions of Kazakhstan	Pathogens DOI 10.3390/pathogens 11080841	Crimean–Congo hemorrhagic fever (CCHF) disease cases are registered annually in endemic regions of Kazakhstan. To study the prevalence of various Crimean–Congo hemorrhagic fever virus (CCHFV) genotypes, a total of 694 ticks were collected from southern regions of Kazakhstan in 2021. Hyalomma marginatum (n = 323) (46.5%), Hyalomma anatolicum (n = 138) (19.9%), Hyalomma asiaticum (n = 126) (18.2%), Hyalomma scupense (n = 80) (11.5%) and Ixodes ricinus (n = 27) (3.9%) were collected using the standardized flagging technique from	Shynybekova, Gaukhar O. Kozhabergenov, Nurlan S. Mukhami, Nazym N. Mukhami N.N.;Chervyakova, Olga V. Burashev, Yerbol D. Zakarya K.D.; Nakhanov A.K.; Orynbayev, Mukhit B.

		the environment. All the tick samples were analyzed for the presence of CCHFV RNA by RT-PCR. The CCHF-positive samples were found within three Hyalomma asiaticum and one lxodes ricinus tick sample. For the first time in Kazakhstan, infection of the Ixodes ricinus tick with CCHFV was detected. The results of sequencing and analysis of the S-gene fragment showed that the Asia 1 and Asia 2 CCHF genotypes circulate in the southern regions of Kazakhstan. Viruses isolated in the Zhambyl and Turkestan regions are assigned to the Asia-2 genotype, whereas the virus isolated in the Kyzylorda region to the Asia-1 genotype.	
61 Efficacy and safe an inactivated w virion va against COVII QazCovid-in®, healthy adults multicentre, randomised, si blind, plac controlled phas clinical trial with month follow-up	ety of hole- ccine DOI D-19, 10.1016/j.eclinm.20 in 22.101526 : A ngle- sebo- se 3 a 6-	Vaccination remains the primary measure to prevent the spread of the SARS-CoV-2 virus, further necessitating the use of effective licensed vaccines. Methods: From Dec 25, 2020, to July 11, 2021, we conducted a multicenter, randomised, single- blind, placebo-controlled phase 3 efficacy trial of the QazCovid- in® vaccine with a 180-day follow-up period in three clinical centres in Kazakhstan. A total of 3000 eligible participants aged 18 years or older were randomly assigned (4:1) to receive two doses of the vaccine (5 µg each, 21 days apart) or placebo administered intramuscularly. QazCovid-in® is a whole-virion formaldehyde-inactivated anti-COVID-19 vaccine, adjuvanted with aluminium hydroxide. The primary endpoint was the incidence of symptomatic cases of the SARS-CoV-2 infection confirmed by RT-PCR starting from day 14 after the first immunisation. The trial was registered with ClinicalTrials.gov NCT04691908. Findings: The QazCovid-in® vaccine was safe over the 6-month monitoring period after two intramuscular immunisations inducing only local short-lived adverse events. The concomitant diseases of participants did not affect the vaccine safety. Out of 2400 vaccinated participants, 31 were diagnosed with CVID-19; 43 COVID-19 cases were recorded in 600 placebo participants with onset of 14 days after the first dose within the 180-day observation period. Only one severe COVID-19 case was identified in a vaccine recipient with a comorbid chronic heart failure. The protective efficacy of the QazCovid-in® vaccine reached 82-0% (95% CI 71.1–88.5) within the 180-day observation period. Interpretation: Two immunisations with the inactivated OazCovid-in® vaccine	Khairullin B.;Zakarya, Kunsulua;Orynbayev, Mukhita;Abduraimov, Yergalia;Kassenov, Markhabata;Sarsenbayeva, Gulbanua;Sultankulova, Kulyaisana;Chervyakova, Olgaa;Myrzakhmetova, Balzhana;Nakhanov, Aziza;Nurpeisova, Ainura;Zhugunissov, Kuandyka Assanzhanova, Nurikaa;Nurabayev, Sergazya;Kerimbayev, Aslana;Yershebulov, Zakira;Burashev, Yerbola;Kulmagambetov, Ilyasb;Davlyatshin, Timurc;Sergeeva, Mariad;Buzitskaya, Zhannad;Stukova, Marinad;Kutumbetov, Lespek

			achieved 82.0% (95% CI 71.1–88.5) protective efficacy against COVID-19 within a 180-day follow-up period. Funding: The work was funded by the Science Committee of the Ministry of Education and Science of Kazakhstan within the framework of the Scientific and Technical Program "Development of a vaccine against coronavirus infection COVID-19". State registration number 0.0927.	
62	Genotoxic and histopathological effects of the Ili River (Kazakhstan) water pollution on the grass carp Ctenopharyngodon idella	doi:10.1080/26395 940.2022.2101544	In the present study, genotoxic, histological and hematological effects of water pollution were evaluated in Ctenopharyngodon idella from the lli river. Water and fish were sampled at three sites. The concentrations of the following heavy metals were measured in the water: Pb, Co, Mg, Cd, Cu, Zn, Fe. Water pollution with metals gradually increased from P1 to P3: in P1, Cu and Fe levels exceeded the maximum permissible concentrations for fish culture, in P2–Pb, Cu, Zn, Fe, and in P3–Pb, Cd, Cu, Zn, Fe. In fish from the lli river, the highest frequency and severity of DNA damage and liver damage were noted in P3, the lowest in P1. Gill lesions were more pronounced and frequent in fish from P3 compared to grass carp from P2 and P1. Fish from P1 showed a higher frequency of neutrophils and a lower percentage of lymphocytes compared to the control. The results also revealed: genotoxicity measured by comet analysis and liver histology were the most sensitive and showed the magnitude of lesions directly related to the level of water contamination. Gill histology also clearly showed pathological changes caused by pollution, while differential leukocyte count was the least useful indicator, as it showed only minor differences between fish from unpolluted and polluted water. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.	Tlenshiyeva A.M., Witeska M. and Shalakhmetova T.M Genotoxic and histopathological effects of the Ili River (Kazakhstan) water pollution on the grass carp Ctenopharyngodon idella // Environmental Pollutants and Bioavailability, 34(1), 297-307. doi:10.1080/26395940.2022.21 01544 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85134593092&origin=resultslist &sort=plf-f
63	Waterbird guilds predict environment attributes of saline inland waters at multi-spatial scales	DOI:10.1016/j.scito tenv.2022.158845	Inland saline waters in Central Asia constitute an important part of steppe ecosystems, providing considerable ecological functions and ecosystem services. Here we aim to present a multi-spatial scale analysis of nutrient cycling and transport waterbird guilds, and the environmental attributes of saline-soda aquatic ecosystems in Kazakhstan. The density, biomass, and diversity of waterbird guilds was determined in the case of three nutrient cycling and transport guilds: a) net-importer (IM), b) importer-exporter (IMEX), c) net-exporter (EX), according to the	Boros E., Inelova Z., La'nczos Z., Vegvari Z Waterbird guilds predict environment attributes of saline inland waters at multi- spatial scales // Science of the total Environment, Volume 855, 10 January 2023, 158845. https://doi.org/10.1016/j.scitoten v.2022.158845

r				
			Boros's guild classification method, and for several traditional	
			reeding guilds: carnivorous, nerbivorous, invertebrate eater,	https://www.scopus.com/record/
			omnivorous and piscivorous. Our results revealed that waterbird	display.url?eid=2-s2.0-
			guilds, as predictors represented by the complete waterbird	85138464789&origin=resultslist
			community, are in close relationship with several $(N = 12)$	&sort=plf-f
			environmental attributes of inland saline waters through complex	
			trophic linkages of waterbird populations on multi-spatial scales.	
			The density and the biomass of the IM and IMEX guilds are	
			strongly and positively correlated (i) with the productivity metrics	
			of habitats (e.g., CHL, GPP), indicating their trophic position,	
			and (ii) with water depth. We found significant correlations	
			among guild density, biomass, diversity and environmental	
			attributes on multi-spatial scales for IMEX and EX. Our results	
			revealed that IMEX predicts the surrounding environment of	
			aquatic habitats, whereas EX species are substantial	
			environmental predictors of aquatic ecosystems. However, the	
			diversity metric had valid models only with EX. The herbivorous	
			and omnivorous guilds, that feed chiefly on plant materials	
			consist mainly of IMEX and EX duck species, which were	
			positively related to grassland coverage and the shoreline	
			development index. As a methodological result, here we present	
			a novel approach, the guild transport index, which has more	
			robust relationships with environmental attributes than individual	
			guilds thus it provides a complex evaluation of the nutrient	
			cycling by birds between aquatic and terrestrial environments on	
			multi-spatial scales © 2022 The Authors	
64	Assessment of	DOI:10.1080/0323	The study aims at selecting ecological approaches to protect	Sardar A Sarbaev A
0.	barley crop	5408 2022 208176	harley from phytopathogenic fungi B sorokiniana D graminea	Tileubaveva Z Avtzhanova
	infestation by leaf	1	and D. Teres. Studies on barley revealed necrotic lesions 0.6-	M & Galymbek K K F
	and stem	1	1.4 cm long with a dark brown or grevish centre on stems and a	Assessment of barley crop
	nhytonathogenic		light brown or reddish outer zone on young leaves caused by B	infestation by leaf and stem
	fungi		sorokiniana isolates. Symptoms caused by D. teres ranged from	nhytopathogenic fungi //
	Tuligi		nocrotic spots to small spots up to 5.5.6 mm in size, but the	Archives of Phytopathology and
			number of lesions and degree of chlorosis was clearly more	Plant Protection 55(0) 1102-
			avprossed on barlow loaves than the stem. The detected D	1116
			araminoa loof analysis royoalad large reddich brown logione	doi:10.1080/02225408.2022.20
			granning from the inequilation site to the ten and lower part of	01761
			spreaking from the inoculation site to the top and lower part of	01701
			the barley leaf segments. The practical value of the results	
			obtained is the possibility of using them on agricultural land for	

			growing cereals in order to minimise the damage caused by plant pathogenic fungi. © 2022 Informa UK Limited, trading as Taylor & Francis Group.	https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85131574383&origin=resultslist &sort=plf-f
65	Chemical Composition of Flower Volatiles and Seeds Fatty Acids of Rosa iliensis Chrshan, an Endemic Species from Kazakhstan	DOI:10.25135/rnp. 271.2105.2083	-linolenic (26.5-28.1%), and oleic (12.0-16.1%) acids were detected as the major constituents. The present study shows that R. iliensis species is rich source of valuable volatiles and fatty acids.a-gurjunene (12.8%), while flowers of P-III (lower reaches of the Ili River) contained any sesquiterpenes. Seven fatty acids were determined in the seeds and unsaturated acids were found to be dominant for studied populations. Linoleic (43.0-51.0%), a-elemene (8.8%), the flowers of P-II (upper reaches of the Ili River) were rich in gAbstract: In the present work, the flower volatiles and seed fatty acids compositions of three populations (P-I, P-II, P-III) of Rosa iliensis were investigated for the first time. R. iliensis is a rare, endangered, narrow-endemic species growing in floodplains of the Ili and Sharyn rivers of Almaty region. The flower volatiles have been investigated with the tandem of MSD-SPME and GC-MS/FID techniques. The seed lipids were extracted from the ripe fruits with microextraction technique. The flower volatiles of R. iliensis three populations were characterized by the abundance of oxygenated monoterpenes with benzaldehyde (13.3-38.7%) and citronellol (2.6-8.8%) as the major constituents. There were detected significant differences in floral scents between the populations. The flowers of P-I (from Sharyn River) contain sesquiterpene. © 2021 ACG Publications.	Özek, G., Chidibayeva, A., Ametov, A., Nurmahanova, A., Özek, T. Chemical Composition of Flower Volatiles and Seeds Fatty Acids of Rosa iliensis Chrshan, an Endemic Species from Kazakhstan // Records of Natural Products, 16(3), 225- 235. Doi:10.25135/rnp.271.2105.208 3 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85122918885&origin=resultslist &sort=plf-f
66	Isolation, identification, and characterization of pathogenic Aeromonas hydrophila from	DOI:10.1016/j.aqre p.2022.101293	The Siberian sturgeon (Acipenser baerii) is a long-lived and late- maturing fish; its natural populations are considered endangered and listed in the first class of protected animals in Kazakhstan. To date, attempts have been made to increase the number of sturgeons through artificial reproduction in aquaculture and a release of the resultant juveniles into the Ural River, which flows into the Caspian Sea. This species faces an increased risk of	Bakiyev, Serika, b;Smekenov, Izata, b;Zharkova, Irinac;Kobegenova, Saidinac;Sergaliyev, Nurland;Absatirov, Gaisae;Bissenbaev, Amangeldy

	critically endangered		Aeromonas infections. Aeromonas hydrophila is the most	
	critically endangered Acipenser baerii		Aeromonas infections. Aeromonas hydrophila is the most important sturgeon pathogen in Kazakhstan, but studies on A. hydrophila infection in Kazakhstan are still inconclusive. In the present work, our purpose was to isolate and characterize dominant bacteria in diseased A. baerii. This isolate, tentatively named AB005, was identified as A. hydrophila in an analysis of its morphological, physiological, and biochemical features and 16S ribosomal-RNA and gyrB gene sequences. A pathogenicity test was carried out for the isolate on healthy Oreochromis niloticus and Acipenser ruthenus via intraperitoneal injection along the caudal peduncle of the fish. Half-lethal doses (LD50) of isolate AB005 for O. niloticus and A. ruthenus were determined: 8.37×105 and 2.89×106 colony-forming units per milliliter, respectively. Virulence gene profiling revealed the presence of seven virulence genes related to pathogenicity (acyltransferase, phospholipase A, serine protease, heat-stable cytotonic enterotoxin, nuclease, and aerolysins A and B) in this A. hydrophila isolate. Drug sensitivity testing showed that the isolate is sensitive to quinolones, aminoglycosides, nitrofurans, amphenicols, and tetracyclines. The present findings will lay the foundation for future research on this pathogen in Siberian-	Isolation, identification, and characterization of pathogenic Aeromonas hydrophila from critically endangered Acipenser baerii// Aquaculture Reports, 26 doi:10.1016/j.aqrep.2022.10129 3 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85135933960&origin=resultslist &sort=plf-f
67	Rice Plants (Oryza sativa L.) under Cd Stress in Fe Deficiency Conditions	DOI:10.1155/2022/ 7425085	Due to the environment pollution by cadmium (Cd) near industrial metallurgic factories and the widespread use of phosphorus fertilizers, the problem of toxic Cd effect on plants is well discussed by many authors, but the phytotoxicity of Cd under iron (Fe) deficiency stress has not been sufficiently studied. The aim of the work was to study comprehensively the effect of Cd under Fe deficiency conditions on physiological, biochemical, and anatomical parameters of rice varieties, to identify varietal differences in plant response to the effect of double stress. Relative resistance and sensitivity to the joint effect of Cd and Fe deficiency stress rice varieties have been identified. Double stress decreased a linear growth and biomass accumulation of roots and shoots (by 36-50% and 33-46% and 32-56% and 32-48%, accordingly), content of photosynthetic pigments (Chla, Chlb, and carotenoids by 36-51%, 32-47%, and 64-78%, accordingly), and relative water content (by 18-26%). Proline content increased by 28-103% in all rice varieties, but to	Saule D. Atabayeva , Agilan B. Rakhymgozhina , Akmaral S. Nurmahanova , Saule S. Kenzhebayeva , Bakdaulet N. Usenbekov , Ravilya A. Alybayeva , Saltanat Sh. Asrandina , Bekzat M. Tynybekov, and Aigul K. Amirova A.K. Rice Plants (Oryza sativa L.) under Cd Stress in Fe Deficiency Conditions // BioMed Research International, 2022 doi:10.1155/2022/7425085

			a lesser extent in sensitive varieties. The thickness of the lower and upper epidermis and the diameter of vascular bundles of leaves decreased by 18-50%, 46-60%, and 13-48%, accordingly. The thickness of the root endodermis and exodermis and diameter of the central cylinder mainly decreased. The thickness of the exodermis increased slightly by 7%, and the diameter of the central cylinder remained at the control level in resistant Madina variety while in sensitive Chapsari variety, these indicators decreased significantly by 50 and 45%, accordingly. Thus, the aggravation of adverse effect of Cd under Fe deficiency conditions and the varietal specificity of plants' response to double stress were shown. It creates the need for further study of these rice varieties using Fe to identify mechanisms for reducing the toxic effect of Cd on plants as well as the study of Fe and Cd transporter genes at the molecular level. © 2022 Saule D. Atabayeva et al.	
68	Recent advances in the therapeutic potential of emodin for human health	DOI:10.1016/j.biop ha.2022.113555	Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier	Sharifi-Rad, J., Herrera-Bravo, J., Kamiloglu, S., Petroni, K., Mishra, A.P., Monserrat- Mesquida, M., Sureda, A., Martorell, M., Aidarbekovna, D.S., Yessimsiitova, Zura Ydyrys, A., Hano, C., Calina, D., Cho, W.C. Recent advances in the therapeutic potential of emodin for human health // Biomedicine and Pharmacotherapy, 154 doi:10.1016/j.biopha.2022.1135 55 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85136463320&origin=resultslist &sort=plf-f

			molecules to the target, thus opening up new therapeutic	
69	Artemisia spp.: An Update on Its Chemical Compositio, Pharmacological and Toxicological Profiles	DOI:10.1155/2022/ 5628601	Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti- inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species. © 2022 Javad Sharifi-Rad et al.	Javad Sharifi-Rad, Jesús Herrera-Bravo, Prabhakar Semwal, Sakshi Painuli, Himani Badoni, Shahira M. Ezzat, Mai M. Farid, Rana M. Merghany,Nora M. Aborehab, Mohamed A. Salem, Surjit Sen, Krishnendu Acharya,Natallia Lapava, Miquel Martorell, Bekzat Tynybekov, Daniela Calina, William C. Artemisia spp.: An Update on Its Chemical Compositio, Pharmacological and Toxicological Profiles// Oxidative Medicine and Cellular Longevity, 2022 doi:10.1155/2022/5628601 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85137853383&origin=resultslist &sort=plf-f
70	Accumulation of Secondary Metabolites of Rhodiola semenovii Boriss. In Situ in the Dynamics of Growth and Development	DOI:10.3390/meta bo12070622	Rhodiola semenovii Boriss. (Regel and Herder) might be a promising replacement for the well-known but endangered Rhodiola rosea L. In this research, the metabolic profile of R. semenovii, including drug-active and stress-resistant components, was studied in the context of source–sink interactions in situ in the dynamics of growth and development. Gas chromatography with mass spectrometric detection and liquid chromatography methods were used. The data obtained allow for assumptions to be made about which secondary	Terletskaya, N.V.; Grazhdannikov, A.E.; Seitimova, G.A.; Meduntseva, N.D.; Kudrina, N.O. Accumulation of Secondary Metabolites of Rhodiola semenovii Boriss. In Situ in the Dynamics of Growth and Development // Metabolites,

			metabolites determine the level of stress resistance in R. semenovii at different stages of ontogeny in situ. For the first time, an expansion in the content of salidroside in the above- ground organs, with its maximum value during the period of seed maturation, and a significant decrease in its content in the root were revealed in the dynamics of vegetation. These results allow us to recommend collecting the ground component of R. semenovii for pharmaceutical purposes throughout the seed development stage without damaging the root system. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.	12(7) doi:10.3390/metabo12070622 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85134064639&origin=resultslist &sort=plf-f
71	Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan	DOI:10.3390/plants 11151904	Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50–60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection's reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL	Genievskaya, Y.; Pecchioni, N.; Laidò, G.; Anuarbek, S.; Rsaliyev, A.; Chudinov, V.; Zatybekov, A.; Turuspekov, Y.; Abugalieva, Saule Genome- Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan // Plants, 11(15) doi:10.3390/plants11151904 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85136983036&origin=resultslist &sort=plf-f

			was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR- resistant cultivars. © 2022 by the authors.	
72	The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies	DOI:10.1016/j.biop ha.2022.113364	Thymoquinone (TQ) is a secondary metabolite found in abundance in very few plant species including Nigella sativa L., Monarda fistulosa L., Thymus vulgaris L. and Satureja montana L. Preclinical pharmacological studies have shown that TQ has many biological activities, such as anti-inflammatory, antioxidant and anticancer. Both in vivo and in vitro experiments have shown that TQ acts as an antitumor agent by altering cell cycle progression, inhibiting cell proliferation, stimulating apoptosis, inhibiting angiogenesis, reducing metastasis and affecting autophagy. In this comprehensive study, the evidence on the pharmacological potential of TQ on pancreatic cancer is reviewed. The positive results of preclinical studies support the view that TQ can be considered as an additional therapeutic agent against pancreatic cancer. The possibilities of success for this compound in human medicine should be further explored through clinical trials. © 2022 The Authors	Butnariu, M., Quispe, C., Herrera-Bravo, J., Helon, P., Kukula-Koch, W., López, V., Les, F., Vergara, C.V., Alarcón- Zapata, P., Alarcón-Zapata, B., Martorell, M., Pentea, M., Dragunescu, A.A., Samfira, I., Yessimsiitova, ZuraDaştan, S.D., Castillo, C.M.S., Roberts, T.H., Sharifi-Rad, J., Koch, W., Cho, W.C. The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies// Biomedicine and Pharmacotherapy, 153 doi:10.1016/j.biopha.2022.1133 64 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85133922047&origin=resultslist &sort=plf-f
73	The complete chloroplast genome	DOI:10.1016/j.dib.2 022.108644	The genus Juniperus L. (Cupressaceae Bartl.) is consisting of about 75 species that are divided into sections Caryocedrus	Almerekova, S., Yermagambetova, M.,
	sequencing data of		Endlicher, Sabina (Miller) Spach, and Juniperus (syn: sect.	Abugalieva, S (Abugalieva,

	Juniperus sabina L.		Oxycedrus Spach), Juniperus sabina L, from section Sabina is	Saule): Turuspekov, Y The
	(Cupressaceae		an important shrub for the maintenance of the ecosystem in	complete chloroplast genome
	Bartl) from		mountainous regions and a source of medicinal compounds	sequencing data of Juniperus
	Kazakhstan		The species is monoecious, rarely dioecious, and distributed in	sabina L (Cupressaceae Bartl)
	Razannotan		Furope Central Asia China and Mongolia The goal of the	from Kazakhstan Data in Brief
			present study was to sequence and reconstruct the complete	45
			chloroplast genome of J sabina. De novo chloroplast (cp)	doi:10 1016/i dib 2022 108644
			denome assembly for L sabina was conducted using Illumina	doi.10.1010/j.dib.2022.100011
			naired-end reads. The assembled on denome size is 127 646 bp.	
			in length and has a typical circular DNA molecule. The genome	
			encodes 118 genes, including 82 protein-coding genes, 32	http://www.coopus.com/record/
			tRNA genes, and 4 rRNA genes, the overall GC content is	diapley writed a contraction
			34 36% The complete co genome nucleotide sequence of 1	display.ull?eld=2-s2.0-
			sabina was deposited to the NCBI (National Center for	85139592076&Origin=resultslist
			Riotechnology Information) under accession number OI 467323	ason=pii-i
			The raw data in faste format was deposited to the NCBI	
			sequence read archive under accession number SRR21515769	
			© 2022 The Authors	
74	Callus induction with	DOI:10 13057/biodi	Orazov A Myrzagaliyeva A Mukhitdinov N Tustubayeva S	Orazov A Myrzagaliyeva A
	6-BAP and IBA as a	v/d230645	2022 Callus induction with 6-BAP and IBA as a way to preserve	Mukhitdinov N &
	way to preserve	1,0200010	Prunus ledebouriana (Rosaceae) and endemic plant of Altai	Tustubaveva S Callus
	Prunus ledebouriana		and Tarbagatai, East Kazakhstan, Biodiversitas 23: 3178-3184	induction with 6-BAP and IBA
	(Rosaceae), and		This article presents the results of the study of in vitro conditions	as a way to preserve Prunus
	endemic plant of		for the cultivation and induction of callus tissues of a rare plant	ledebouriana (Rosaceae), and
	Altai and Tarbagatai.		species Prunus ledebouriana (Schlecht.) Y.Y.Yao (Ledebour's	endemic plant of Altai and
	East Kazakhstan		almond), endemic plant to East Kazakhstan. For the first time,	Tarbagatai, East Kazakhstan //
			protocol and optimal composition of Murashige & Skoog (MS)	Biodiversitas, 23(6), 3178-3184.
			were developed for obtaining calendemiclus tissues. The main	doi:10.13057/biodiv/d230645
			indicator of successful introduction was the frequency of callus	
			tissue formation in vitro. Two types of explants were used: the	
			whole embryos and embryos with a removed root part. The	
			removal of the root part inhibited the organogenesis of the	https://www.scopus.com/record/
			embryonic root and the first shoot, which allowed the	display.uri?eid=2-s2.0-
			accumulation of nutrients for the growth of the callus mass and	85134401387&origin=resultslist
			increased the frequency by 7.79±0.46%. Various exogenous	&sort=plf-f
			phytohormones such as Kinetin, 6-BAP, GA, IBA were added to	
			the MS culture medium. A decrease in Kinetin concentrations of	
			0.04 mg/L resulted in lower intensity, but a higher frequency of	
			formation (72.00±5.66%) and mass gain. The average	

			concentration up to 0.5 mg/L of exogenous phytoregulators, such as GA and 6-BAP, resulted in frequency from 65.38±5.44% to 72.00±5.66%, the concentration of IBA up to 1 mg/L increased the frequency from 46.00±2.83 to 72.00±5.66%. The protocol for obtaining callus from an embryonic explant and the composition of the optimal nutrient medium for the induction of callusogenesis made it possible to obtain P. ledebouriana meristem tissues for further use in the development of callus cryopreservation technology. © 2022, Society for Indonesian Biodiversity. All rights reserved.	
75	Genetic Variation in Populations of Picea schrenkiana Fisch. et C.A. Mey. Based on Simple Sequence Repeat Markers	DOI:10.3103/S009 6392522020134	Abstract: Picea schrenkiana is a tree species native to the Tian Shan Mountains of Central Asia in Western China, Kazakhstan, Kyrgyzstan. P. schrenkiana is one of the major forest species in the region with a gradually decreasing area due to anthropogenic factors and natural disasters. The goal of the present study was to assess the level of genetic diversity in five populations of P. schrenkiana collected in the Tian Shan mountains of Kazakhstan. Nineteen simple sequence repeat (SSR) markers were selected for the evaluation of the genetic diversity in populations of P. schrenkiana with typical upright and prostrate forms collected in the Tian Shan mountains in Kazakhstan. The analysis of P. schrenkiana samples allowed the identification of twelve polymorphic out of nineteen SSR markers, with six of them having Polymorphism Information Content (PIC) index values of 0.5 or higher. The average Nei's genetic diversity index of the overall populations was 0.54 and comparable with results from studies of other Picea species. The total genetic variation in the species was partitioned as 86% within and 14% between populations. The Principal Coordinate Analysis plot suggested that twelve SSR markers effectively separated populations with typical upright and prostrate forms of P. schrenkiana. The estimated gene flow index (Nm) among populations based on all alleles was 3.05, confirming a high outbreeding rate within the species. Nevertheless, the application of SSR markers separated populations with typical upright and prostrate forms of P. schrenkiana. The results suggest that the maintenance of the genetic variation within P. schrenkiana can be successfully achieved through an in situ conservation strategy. © 2022, Allerton Press, Inc.	Yermagambetova, M. M., Almerekova, S. S., Krekova, Y., Turuspekov, Y. K. Abugalieva S.I. Genetic Variation in Populations of Picea schrenkiana Fisch. et C.A. Mey. Based on Simple Sequence Repeat Markers // Moscow University Biological Sciences Bulletin, 77(2), 76-83. doi:10.3103/S00963925220201 34 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85137563437&origin=resultslist &sort=plf-f

76	The Changing Dynamics of Kazakhstan's Fisheries Sector: From the Early Soviet Era to the Twenty-First Century	DOI:10.3390/w140 91409	Kazakhstan, a former Soviet republic that is now independent, lies near the center of arid Eurasia. Its sparse hydrographic network includes a small number of large rivers, lakes, and reservoirs, many ponds and smaller streams, as well as littoral zones bordering the Caspian Sea and the Aral Sea. A diverse fisheries sector, initially based on wild fish capture and later including aquaculture, developed in these waters during the Soviet era, when animal agriculture was unable to meet the protein needs of Soviet citizens. The sector, which was originally centered on the Volga–Caspian basin, was tightly managed by Moscow and benefitted from coordinated investments in research, infrastructure, and human resources, as well as policies to increase the consumption of fish products. Independence in 1991 administered a political and economic shock that disrupted these relationships. Kazakhstan's wild fish harvests plummeted by more than two-thirds, and aquaculture collapsed to just 3% of its previous level. Per capita consumption of fish products also declined, as did processing capacity. Favorable recent policies to define fishing rights, incentivize investments, prevent illegal fishing, and make stocking more effective have helped to reverse these trends and stabilize the sector. Continued recovery will require additional steps to manage water resources sustainably, prioritize the use of water for fish habitats, and minimize the effects of climate change. This comprehensive assessment of Kazakhstan's fisheries sector over the past century provides the basis to understand how long-term dynamic interactions of the environment with the political economy influence fisheries in Eurasia's largest country. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.	Graham, N.A., Pueppke, S.G., Nurtazin, S., Konysbayev, Talgarbay, Gibadulin, F., Sailauov, M The Changing Dynamics of Kazakhstan's Fisheries Sector: From the Early Soviet Era to the Twenty- First Century // Water (Switzerland), 14(9) doi:10.3390/w14091409 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85129836916&origin=resultslist &sort=plf-f
77	Identification of SNP Markers Associated with Grain Quality Traits in a Barley Collection (Hordeum vulgare L.)	DOI:10.3390/agron omy12102431	Barley (Hordeum vulgare L.) is a cereal crop traditionally used in animal feed, malting, and food production. In this study, a collection of barley was analyzed according to key grain quality traits, including protein content (GPC), starch content (GSC), extractivity (EX), and grain test weight per liter (TWL). A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with GPC,	Genievskaya, Y.; Almerekova, S.; Chudinov, V.; Blake, T.; Abugalieva, A.; Turuspekov, Y. Identification of SNP Markers Associated with Grain Quality Traits in a Barley Collection (Hordeum vulgare L.)

	Harvested in		GSC, EX, and TWL using a collection of 658 barley accessions	Harvested in Kazakhstan //
	Kazakhstan		from the USA and Kazakhstan. The collection was grown at	Agronomy, 12(10)
			three breeding organizations in Kazakhstan in 2010 and 2011	doi:10.3390/agronomy1210243
			and genotyped using the 9K SNP Illumina chip. As a result, 18	1
			marker-trait associations (MTAs) for GPC, 19 MTAs for GSC, 12	
			MTAs for EX, and 27 MTAs for TWL were detected, resulting in	
			30 identified QTLs. It was shown that the genetic locations of 25	
			of these 30 QTLs were in similar positions to the QTLs and	https://www.scopus.com/record/
			genes previously reported in the scientific literature, suggesting	display.uri?eid=2-s2.0-
			that the 5 remaining QTLs are novel putative genetic factors for	85140439636&origin=resultslist
			the studied grain quality traits. Five of the most significant SNP	&sort=plf-f
			markers (p < 2.6 × 10–5) for the studied quality traits identified	
			in the GWAS were used for the development of reliable and	
			informative competitive allele-specific PCR (KASP) genotyping	
			assays. The effectiveness of two assays (ipbb_hv_6 and	
			ipbb_hv_128) was confirmed via validation in a separate	
			collection of barley breeding lines grown in large field plots in	
			northern Kazakhstan. Therefore, these KASP assays can be	
			efficiently used in a marker-assisted selection of grain quality	
			traits in barley breeding. © 2022 by the authors.	
78	Sesquiterpenoid	DOI:10.1186/s1293	Plants-based natural compounds are well-identified and	Praveen Dhyani, Priyanka Sati,
	lactones as potential	5-022-02721-9	recognized chemoprotective agents that can be used for primary	Eshita Sharma, Dharam Chand
	anti-cancer agents:		and secondary cancer prevention, as they have proven efficacy	Attri, Amit Bahukhandi, Bekzat
	an update on		and fewer side effects. In today's scenario, when cancer cases	Tynybekov, Agnieszka Szopa,
	molecular		rapidly increase in developed and developing countries, the anti-	Javad Sharifi Rad, Daniela
	mechanisms and		cancerous plant-based compounds become highly imperative.	Calina, Hafiz A. R.
	recent studies		Among others, the Asteraceae (Compositae) family's plants are	Suleria,William C. Cho
			rich in sesquiterpenoid lactones, a subclass of terpenoids with	Sesquiterpenoid lactones as
			wide structural diversity, and offer unique anti-cancerous effects.	potential anti-cancer agents: an
			These plants are utilized in folk medicine against numerous	update on molecular
			diseases worldwide. However, these plants are now a part of	mechanisms and recent studies
			the modern medical system, with their sesquiterpenoid lactones	// Cancer Cell International,
			researched extensively to find more effective and efficient	22(1) doi:10.1186/s12935-022-
			cancer drug regimens. Given the evolving importance of	02721-9
			sesquiterpenoid lactones for cancer research, this review	
			comprehensively covers different domains in a spectrum of	
			sesquiterpenoid lactones viz (i) Guaianolides (ii)	
			Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and	
			(v) Germacrene, from important plants such as Cynara	

			scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development. © 2022, The Author(s).	https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85139467963&origin=resultslist &sort=plf-f
79	Feasibility of waste- free use of microalgae in aquaculture	DOI:10.1007/s1081 1-022-02787-y	Following the circular bioeconomy approach, this study shows the possibility of effective microalgal bioremediation of aquaculture wastewater integrated with the production of protein-rich biomass, which can be used as a feed additive. Screening was carried out among strains of Chlorella vulgaris BB-2, Parachlorella kessleri Bh-2 and Chlamydomonas reinhardtii C-124 with the aim of selecting the strain which is characterized by high indicators of growth in the fish farms wastewaters. Among these three strains, C. vulgaris BB-2 was selected due to its increased growth rate in aquaculture wastewater with ammonia, nitrite, and nitrate and phosphate removal. In addition, in the water when cultivating microalgae in it the coliform index and total microbial number decreased to 5 and 1.8 × 103 colony-forming unit cm-3. Large-scale microalgae cultivation utilizing aquaculture wastewater gave biomass production of 43.5 mg L-1 day-1. The biochemical composition analysis of the aquaculture wastewater phycoremediation-derived biomass of C. vulgaris BB-2 revealed that the content of 57.0 ± 1.2% protein, 16 ± 1.2% lipid, and 11.4 ± 1.4% carbohydrate. The obtained data indicate that the lipid extract of microalgae C. vulgaris BB-2 contained saturated 30.7% and polyunsaturated fatty acids 69.3%. The main fraction of amino acids consisted of glutamic acid, lysine, aspartic acid	Nurziya R. Akmukhanova, Assemgul K. Sadvakasova, Makpal M. Torekhanova, Meruyert O. Bauenova, Bolatkhan K. Zayadan, Saule M. Shalgimbayeva, Kenzhegul Bolatkhan, Saleh Alwasel, Yoong Kit Leong, Jo Shu Chang, Suleyman I. Allakhverdiev Feasibility of waste-free use of microalgae in aquaculture // Journal of Applied Phycology, 34(5), 2297-2313. doi:10.1007/s10811-022- 02787-y https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85132988406&origin=resultslist &sort=plf-f
			additive in the diet of fish has shown a positive effect on the morpho-physiological and biochemical growth parameters and intestinal microflora of Nile tilapia (Oreochromis niloticus).	
			Graphical abstract: [Figure not available: see fulltext.] © 2022, The Author(s), under exclusive licence to Springer Nature B.V.	
80	Antihypothyroid	DOI:10.3390/molec	In terms of prevalence, thyroid pathology, associated both with a	Korbozova, N.K.; Kudrina, N.O.;
	Effect of Salidroside	ules27217487	violation of the gland function and changes in its structure, occupies one of the main places in clinical endocrinology. The	Zhukova, N.A.; Grazhdannikov, A.E.; Blavachinskaya, I.V.;

			problem of developing low-toxic and highly effective herbal preparations for the correction of thyroid hypofunction and its complications is urgent. Salidroside is a glucoside of tyrosol, found mostly in the roots of Rhodiola spp., and has various positive biological activities. The purpose of this study was to study the antihypothyroid potential of salidrosid-containing extract from R. semenovii roots, which was evaluated on a mercazolyl hypothyroidism model. We showed that extract containing salidroside is a safe and effective means of hypothyroidism correction, significantly reducing ($p \le 0.001$) the level of thyroid-stimulating hormone and increasing the level of thyroid hormones. The combined use of R. semenovii extract with potassium iodide enhances the therapeutic effect of the extract by 1.3-times. © 2022 by the authors.	Seitimova, G.A.; Kulmanov, T.E.; Tolstikova, T.G Antihypothyroid Effect of Salidroside // Molecules Открытый доступТом 27, Выпуск 21November 2022 Номер статьи 7487 DOI: 10.3390/molecules27217487 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85141797322&origin=resultslist &sort=plf-f
81	Microalgae Indicators of Charophyte Habitats of South and Southeast Kazakhstan.	DOI:10.3390/d140 70530	Charophyte algae is a very sensitive group of organisms occupying Kazakhstan waterbod-ies. They are distributed throughout the country; however, not enough studies have been conducted, especially in the southern region. Research carried out in 2019–2022 identified 33 habitats of charo-phyte algae in the south and southeastern regions of Kazakhstan, including 15 new to Kazakhstan. Bioindicators and the statistical analysis of 223 species of nine phyla of microalgae associated with charophytes revealed that the main factors influencing the distribution of algal diversity may be habitat altitude and hydrology. The habitat altitude of about 700 m above sea level was shown to be the boundary between the different diversity distributions. The application of bioindicator methods can expand our knowledge on the ecology of the charophyte species in Kazakhstan. The study of algal diversity in charophyte habitats can serve as a tool for tracking climate change under potential future climate warming. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.	Sametova, E.; Jumakhanova, G.; Nurashov, S.; Barinova, S.; Jiyenbekov, A.; Smith, T. Microalgae Indicators of Charophyte Habitats of South and Southeast Kazakhstan.// Diversity, 14(7) doi:10.3390/d14070530 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85133539348&origin=resultslist &sort=plf-f
82	Structural Characteristics of	DOI:10.12911/229	The article provides brief geobotanical characteristics of plant	Assel Childibayeva, Abibulla
	Rosa Iliensis	30330/140340	the floodplains of the Ili and Sharyn rivers, as well as presents	Kurbatova, Aigul Akhmetova,

	Chrshan. under Conditions of the Floodplains of the Rivers IIi and Sharyn		the morpho-anatomical struc-ture of vegetative organs (stem and leaf) of the species under study. R. iliensis Chrshan. is undoubtedly a rare, endangered species of the flora of Kazakhstan. Its distribution area is shrinking from year to year as a result of the anthropogenic pressure on the environment. The biometric indicators of vegetative organs in the samples collected from populations 1 and 2 were approximately the same. The indicators of the samples collected from population 3 differed substantially. This is a completely natural process, since there are substantial differences in the climatic conditions of the upper and lower parts of the basin where the Ili River flows: a sharp increase in temperature and a decrease in precipitation from high to low hypsometric levels of the basin. Moreover, there is a gradual aridiza-tion of the territory from east to west. Naturally, this entails a change in both soil and vegetation cover as well as leaves its mark on the morpho-anatomical structure of vegetative organs. With this in mind, the authors recom-mend continuous monitoring of the state of the populations at the three sites where R. iliensis Chrshan. was found. © 2022. Journal of Ecological Engineering. All Rights Reserved	Bekzat Makulbayevich Tynybekov, Gulzhanat Amangeldykyzy Mukanova. Structural Characteristics of Rosa Iliensis Chrshan. under Conditions of the Floodplains of the Rivers IIi and Sharyn // Journal of Ecological Engineering, 23(1), 296-304. https://doi.org/10.12911/229989 93/143943 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85122232847&origin=resultslist &sort=plf-f
83	Exotic Fish Species in the Balkhash Lake Basin (Kazakhstan)	DOI:10.1134/S199 5082922010084	Abstract: An exotic species, channel catfish Ictalurus punctatus, has been recorded in the ichthyofauna of the Republic of Kazakhstan for the first time. The specimens were caught in the Ili River upstream of the Kapchagai Reservoir in October 2020. Based on repeated findings of Nile tilapia Oreochromis niloticus and its hatchlings in the Borokhudzir River (a tributary of the Ili River), it has been concluded that a self-reproducing population of this species has appeared here. The possibility of naturalization of channel catfish in the Balkhash basin, which poses a threat to the remains of the native Ili ichthyofauna, is discussed. © 2022, Pleiades Publishing, Ltd.	Mamilov, N.Sh.; Konysbaev T.G.; Belyaev A.I.; Vasil'eva E.D Exotic Fish Species in the Balkhash Lake Basin (Kazakhstan) // Inland Water Biology, 15(1), 84-87. doi:10.1134/S19950829220100 84 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85127221079&origin=resultslist &sort=plf-f
84	Identification of quantitative trait loci for leaf rust and stem	DOI:10.3390/plants 11010074	In recent years, leaf rust (LR) and stem rust (SR) have become a serious threat to bread wheat production in Kazakhstan. Most local cultivars are susceptible to these rusts, which has affected	Zatybekov, A., Genievskaya, Yuliyaa, b

-				
	rust seedling		their yield and quality. The development of new cultivars with	Rsaliyev, Aralbekc
	resistance in bread		high productivity and LR and SR disease resistance, including	
	wheat using a		using marker-assisted selection, is becoming an important	Send mail to Rsaliyev
	genome-wide		priority in local breeding projects. Therefore, the search for key	A.;Maulenbay, Akerkec
	association study		genetic factors controlling resistance in all plant stages,	
			including the seedling stage, is of great significance. In this	.;Yskakova, Gulbaharc
			work, we applied a genome-wide association study (GWAS)	
			approach using 212 local bread wheat accessions that were	G. Savin, Timurd
			phenotyped for resistance to specific races of Puccinia triticina	
			Eriks. (Pt) and Puccinia graminis f. sp. tritici (Pgt) at the seedling	Turuspokov Vorlana
			stages. The collection was genotyped using a 20 K Illumina	., ruruspekov, renana,
			iSelect SNP assay, and 11,150 polymorphic SNP markers were	V. Aburaliana Caulaa
			selected for the association mapping. Using a mixed linear	Y.;Abugalleva, Saulea,
			model, we identified 11 quantitative trait loci (QTLs) for five out	Identification of quantitative trait
			of six specific races of Pt and Pgt. The comparison of the results	loci for leaf rust and stem rust
			from this GWAS with those from previously published work	seeding resistance in bread
			showed that nine out of eleven QTLs for LR and SR resistance	wheat using a genome-wide
			had been previously reported in a GWAS study at the adult plant	association study // Plants,
			stages of wheat growth. Therefore, it was assumed that these	11(1)
			nine common identified QTLs were effective for all-stage	doi:10.3390/plants11010074
			resistance to LR and SR, and the two other QTLs appear to be	
			novel QTLs. In addition, five out of these nine QTLs that had	
			been identified earlier were found to be associated with vield	
			components, suggesting that they may directly influence the	https://www.scopus.com/record/
			field performance of bread wheat The identified QTLs including	display.uri?eid=2-s2.0-
			novel QTLs found in this study may play an essential role in the	85121687724&origin=resultslist
			breeding process for improving wheat resistance to LR and SR	&sort=plf-f
			© 2021 by the authors Licensee MDPL Basel. Switzerland	
85	New data on	DOI:10 1111/iai 14	Lake Balkhash is one of the largest lakes of Asia and belongs to	Mamilov N Shalakhmetova T
00	diversity and	294	the Republic of Kazakhstan. The lake has suffered from alien	Konvsbavev T Sutuveva I
	distribution of fish in	201	fish introduction water pollution and overfishing during last	Abdullaveva B New data on
	shallow waters in		decades. The goal of this study was to investigate contemporary	diversity and distribution of fish
	western Lake		fish diversity in shallow waters in western part of the Lake	in shallow waters in western
	Ralkhash		Balkhash Fish samples were collected there 2018 and 2019	Lake Balkhash (Kazakhetan) //
	(Kazakhstan)		The data obtained showed changes in fish species diversity and	lournal of Applied Ichthyology
	(Nazaniistaii)		significant decrease in the proportion of invenile commercial fish	38(2) 241_276
			in shallow sites of western part of the lake. The distribution of	$D_{0}(2),$ 241-240.
			an shallow sites of western part of the lake. The distribution of	bttps://www.scopus.com/rocord
			species seems random and needs further study to elucidate key	/diaplay.uri2aid=2.a2.0
			nacions. Thus, our data indicated detenoration of shallow waters	/uispiay.uii:eiu=2-S2.0-

			in the western Balkhash as "nursery" for commercial fish	85122753584&origin=resultslist
			species. © 2022 Wiley-VCH GmbH	&sort=plf-f
86	Past, Current and Future of Fish Diversity in the Alakol Lakes (Central Asia: Kazakhstan)	DOI:10.3390/d140 10011	The aboriginal ichthyofauna of the Balkhash basin consists mainly of endemic fish species. By the end of the last century, indigenous fish species were driven out of Lake Balkhash and the Alakol Lakes remain the largest refuges of aboriginal fish fauna. Knowledge of regularities of the modern distribution of the indigenous fishes is crucial for biodiversity conservation as well as restoring aquatic ecosystems. The modern diversity of fish species was investigated there in this study. Significant changes for the indigenous and some alien fish distributions were revealed in contrast with earlier known data. Canonical correspondence analysis (CCA) was used to study the relationships between habitat characteristics and species abundance. Water mineralization and maximal observed water temperatures were estimated as the main environmental variables in fish distribution at the local scale. Habitat change leads to fish fauna homogenization as a result of rare species extinction and alien penetration. Growing human population and poor water management make the future of the indigenous fishes unpredictable. © 2021 by the authors. Licensee MDPI, Pacel Switzgrand	Sharakhmetov S., Amirbekova F., Bekkozhayeva D., Sapargaliyeva N., Kegenova G., Tanybayeva A., Abilkasimov K. Past, Current and Future of Fish Diversity in the Alakol Lakes (Central Asia: Kazakhstan) // Diversity, 14(1) doi:10.3390/d14010011 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85121871691&origin=resultslist &sort=plf-f
87	Phytochemical study of Crambe tatarica Sebeok, a promising source of medicinal plant extracts	DOI:10.30848/PJB 2022-2(38)	The article presents the results of a phytochemical study of Crambe tatarica Sebeok, a promising plant of the family Brassicaceae growing in Western Kazakhstan. The results of qualitative and quantitative analyses confirmed that the aboveground parts of C. tatarica are richer in alkaloids, carotenoids, monosaccharides (glucose, galactose, rhamnose, mannose, xylose, arabinose, and rutinose) and phospholipids than the root system. In the roots of C. tatarica, a higher content of tannins has been recorded (2,3-O-hexaoxidifenoyl-4,6-O- sanguisorbil-D-glucose, 2,3-di-O-galloyl-D-glucose, 1,2,4-tri-O- galloyl- β -D-glucose), coumarins (4,5-dioxycoumarin, 7- hydroxycoumarin, scopoletin), polysaccharides, triterpenoids, phenolic and hydroxycinnamic acids (gallic, caffeic, ferulic, lilac, gentisic, vanillic, o-cumaric) and flavonoids (kaempferol, quercetin, gossipetin, myricetin, (+)-catechin, 3-O α -L- rhamnopyranoside kaempferol). Regardless of the place of growth, the Kazakh species C. tatarica contains alkaloids,	Turalin B., Kurbatova N., Inelova Z.,Kurmanbayeva M., Abidkulova K. Phytochemical study of Crambe tatarica Sebeok, a promising source of medicinal plant extracts // Pakistan Journal of Botany, 54(2), 653-666. doi:10.30848/PJB2022-2(38) https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85128173057&origin=resultslist &sort=plf-f

			tanning of the hydrolyzable type carotenoide coumaring	
			nolvsaccharides triternenoids phenolic acids flavonoids and	
			phospholipids. We studied antibacterial and fundicidal activity of	
			the aqueous alcohol and acetone extracts of the aboveground	
			parts and roots of C tatarica. We found that certain	
			concentrations of these extracts had both bactericidal and	
			fundicidal activity. The highest activity of the tested samples of	
			acetone extracts was shown against the test strain S aureus	
			ATCC 6538-P. Thus, acetone extracts of the aboveground parts	
			and roots of C. tatarica were active against staphylococcus at a	
			concentration of 0.78 mg / ml, where 0.9% saline was used as a	
			solvent When dissolved in 96% ethanol, acetone extracts also	
			showed increased activity against the museum test strain of S	
			aureus ATCC 6538-P. Extracts from the aboveground parts and	
			roots of C tatarica had fundicidal activity against Candida	
			albicans ATCC 10231 at concentrations of 0.78 mg / ml 12.5 mg	
			/ ml. respectively (96% ethanol was used as a solvent) $©$ 2022.	
			Pakistan Botanical Society. All rights reserved	
88	The Reactions of	DOI:10.3390/plants	Plants of the Crassulaceae family are natural accumulators of	Nina V. Terletskava, Gulnaz A
	Photosynthetic	10061196	many medicinal secondary metabolites (SM). This article	Seitimova Nataliva O. Kudrina
	Capacity and Plant		describes the study of morphophysiological, anatomic and	Nataliva D. Meduntseva
	Metabolites of		phytochemical responses of immature plants of Rhodiolla	Kazhvbek Ashimulv The
	Sedum hvbridum L.		semenovii under water deficit and (or) cold-stress conditions.	Reactions of Photosynthetic
	in Response to Mild		Changes in biomass production due to water content in plant	Capacity and Plant Metabolites
	and Moderate Abiotic		tissues such as a decrease in water deficit and an increase in	of Sedum hybridum L. in
	Stresses		cold stress were revealed. A significant decrease in the	Response to Mild and Moderate
			efficiency of the photosynthetic apparatus under stress	Abiotic Stresses // Plants, 10(6)
			conditions was noted, based on the parameters quantum	doi:10.3390/plants10061196
			efficiency of Photosystem II and electron transport rate and	https://www.scopus.com/record/
			energy dissipated in Photosystem II. The greatest decrease in	display.uri?eid=2-s2.0-
			efficiency was pointed out in conditions of water shortage. The	85107566560&origin=resultslist
			anatomical modulations of root and shoot of R. semenovii under	&sort=plf-f
			stress conditions were found. For the first time, a detailed study	
			of the chemical composition of the ethanol extract of root and	
			shoot of R. semenovii under stress was carried out using gas	
			chromatography-mass spectrometry. The qualitative and	
			quantitative composition of SM associated with acclimation to	
			the effects of abiotic stresses was determined. Both nonspecific	
			and specific phytochemical changes caused by the action of	

			water deficiency and cold treatment were identified. It has been shown that the antioxidant system in plant tissues is complex, multicomponent, depending on a number of natural and climatic	
			factors. Further research should be focused on the use of	
			abiotic stressors for the targeted synthesis of bioactive SMs	
			valuable for pharmaceutical use. © 2021 by the author.	
			Licensee MDPI, Basel, Switzerland.	
89	Introduced, Mixed, and Peripheral: Conservation of Mitochondrial-DNA Lineages in the Wild Boar (Sus scrofa L.) Population in the Urals	DOI:10.3390/d141 10916	Translocations and introductions are important events that allow organisms to overcome natural barriers. The genetic background of colonization success and genetic consequences of the establishment of populations in new environments are of great interest for predicting species' colonization success. The wild boar has been introduced into many parts of the world. We analyzed sequences of the mitochondrial-DNA control region in the wild boars introduced into the Ural region and compared them with sequences from founder populations (from Europe, the Caucasus, Central Asia, and the Far East). We found that the introduced population has high genetic diversity. Haplotypes from all the major phylogenetic clades were detected in the analyzed group of the animals from the Urals. In this group, no haplotypes identical to Far Eastern sequences were detectable despite a large number of founders from that region. The contribution of lineages originating from Eastern Europe was greater than expected from the proportions (%) of European and Asian animals in the founder populations. This is the first study on the genetic diversity and structure of a wild boar population of mixed origin at the northern periphery of this species' geographical range. © 2022 by the authors.	Markov,N.I. (Markov, Nikolay),; Ranyuk, M.N. (Ranyuk, Maryana N.); Babaev, E.A. (Babaev, Elmar A.); Seryodkin, I.V. (Seryodkin, Ivan, V.); Senchik, A.V. (Senchik, Alexander, V); Bykova, E.A. (Bykova, Elena A.); Esipov, AV (Esipov, Alexander, V); Nurtazin, ST (Nurtazin, Sabir T.); Pavlova, OS (Pavlova, Olga S.) Introduced, Mixed, and Peripheral: Conservation of Mitochondrial-DNA Lineages in the Wild Boar (Sus scrofa L.) Population in the Urals // <i>DiversityOmkpыmый</i> <i>доступ</i> Том 14, Выпуск 11November 2022 Homep статьи 916 DOI:10.3390/d14110916 https://www.scopus.com/record/ display.uri?eid=2-s2.0- 85141765073&origin=resultslist
				&soπ=plf-f